
Answering reachability queries on
large directed graphs

Introducing a new data structure using bit vector compression

Author:
Sebastiaan J. van Schaik
Utrecht University / University of Oxford

Supervisors:
Prof. Oege de Moor (University of Oxford)
Prof. dr. Arno Siebes (Utrecht University)

Thesis submitted in partial fulfilment of the degree of Master of Science in Computer Science
Department of Computing Sciences, Faculty of Science, Utrecht University

September 2010

Answering reachability queries on large directed graphs
Introducing a new data structure using bit vector compression

Sebastiaan J. van Schaik
Utrecht University / University of Oxford

Abstract

Answering reachability queries on graphs has been subject of extensive research for the last couple
of decades. Reachability data structures and algorithms provide an answer to probably one of the
easiest sounding questions in graph theory: can some vertex j be reached from another vertex i
along edges in the graph? Such queries can be answered in many different ways, for example by
using data structures representing the transitive closure of a graph.

Starting in the 1950’s, computer scientists and mathematicians have proposed multiple ways to
process a graph, extract reachability information and represent the transitive closure. Data sources
– and the graphs representing them – are vastly growing, forcing researchers to look for new ways
to efficiently represent a transitive closure, which grows quadratically in the number of vertices of a
graph. Additionally, the amount of time required to process a graph and build a transitive closure
data structure should be limited, as well as the amount of time required to answer reachability
queries using the data structure.

This thesis provides an introduction to transitive closure computation and proposes to use the
concept of bit vector compression to reduce the amount of memory required to represent a transitive
closure. A new data structure (based on bit vector compression) is presented, together with both
a theoretical and experimental analysis to compare its performance – in terms of memory usage,
construction time and query response time – to data structures presented in publications at major
conferences.

Although data structures described in recent publications are supported by a very sound the-
oretical foundation, it turns out that in practice more trivial existing approaches to compression
of transitive closure data structures often provide similar or even better performance. The newly
designed compression scheme often works faster (in terms of both construction time and query time)
and has a smaller memory footprint in virtually all cases.

“Life is all about timing... the unreachable becomes reachable, the unavailable become available, the
unattainable... attainable. Have the patience, wait it out. It is all about timing.”

— Stacey Charter

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Preliminary definitions . 2
1.3 Transitive closure . 3
1.4 Contributions . 5
1.5 Structure of the thesis . 5

2 Prior work 7
2.1 Floyd-Warshall . 7
2.2 Exploiting strongly connected components . 8
2.3 Using chain and path decomposition . 16
2.4 Matrix multiplication . 20

3 Compressing reachability information 21
3.1 Introduction . 21
3.2 WAH . 21
3.3 PWAH . 23

4 Experimental evaluation 33
4.1 Set up of experiments . 33
4.2 Influence of input graphs on PWAH performance . 36
4.3 Comparing different PWAH schemes . 41
4.4 Indexing PWAH . 42
4.5 PWAH vs. interval lists, Path-Tree and 3-Hop . 45

5 Conclusion 53
5.1 Experimental evaluation . 53
5.2 Further research . 53

A Tarjan’s algorithm: example 57

B Code details 61

v

Chapter 1

Introduction

1.1 Introduction

1.1.1 Reachability

Providing reachability information about a graph within a limited amount of time using a limited
amount of memory is still a challenging problem in computer science. Although the problem itself
almost seems too trivial to be interesting, it has been a subject of ongoing research for the last
couple of decades. Extensive work has been done not only to decrease the amount of time required
to answer a reachability query, but also to optimise (in terms of both time and memory usage) the
process of building a data structure required to answer such queries.

1.1.2 Applications

Reachability queries are used in many kinds of applications, both in research and in industry. Ex-
amples of such applications include, but are certainly not limited to:

Source code analysis – a call graph provides information about method calls. Reachability infor-
mation of such a graph can help to find dead code: methods which can and will never be reached
from an application’s main method. Other examples of source code analysis using reachability in-
formation are pointer analysis [3] and interprocedural dataflow analysis [26,27].

Analysis of social networks – social networks can be modelled as graphs capturing people (ver-
tices) and connections between people (edges). Reachability information can be used to determine
whether a person is a friend of a friend of · · · of a friend, enabling the network to pose some restric-
tions on whether or not a person can view another person’s profile page.

Computational biology – when analysing metabolic networks [20], reachability information is
used to assist in solving search problems. Furthermore, reachability information has been used for
classification of cardiac abnormalities by using heart rate signals [1] and for querying gene ontologies
represented by graphs [4, 9, 35].

Model checking – reachability analysis is a very important part of model checking [5]: it helps
determining whether a state (or set of states) can reach certain other states. States are represented
by vertices in a graph, state changes are modelled by edges. These graphs can easily grow extremely
large, making it harder and harder to determine from which states an unwanted state can be reached.

Route planning – when travelling from some location a to an other location b, people are mostly
interested in computing the shortest (or fastest) path and knowing the exact route. On first sight,
it does not seem to be very interesting to know whether or not a path exist. Hence, reachability

1

1.2. PRELIMINARY DEFINITIONS CHAPTER 1. INTRODUCTION

information does not seem to suffice. However, it might be interesting be able to determine quickly
whether a path without using e.g. a ferry or a toll road exists. Would reachability information be
available, portable navigation devices can instantly inform the user that it is indeed not possible
to travel from e.g. Edinburgh to Lerwick on the Shetland islands without taking a ferry, in stead
of having to analyse a very large number of alternative routes in order to be able to present that
conclusion.

1.2 Preliminary definitions

Answering queries regarding reachability within graphs is strongly related to transitive closure com-
putation. Before describing the concept of transitive closure, it is important to introduce some graph
theoretic notation of basic concepts. Notation varies in literature, the notation and concepts stated
below will be used throughout this thesis.

Directed graph

Definition 1. A directed graph (or digraph) G is a pair (V,E), where V is a finite set of size n
and E is a binary relation on V . The set V = {v0, v1, . . . , vn−2, vn−1} is called the vertex set of
G, and its elements are called vertices. The set E is called the edge set of G, and its elements are
called edges. An edge is an ordered pair of vertices (vi, vj) which is referred to by, respectively, the
tail and the head of the edge.
(adapted from [7, 34])

Although research in the field of symmetrical reachability (on undirected graphs, in which edges
consist of unordered pairs of vertices) is closely related to reachability in directed graphs, the al-
gorithms and data structures discussed in this thesis are devised to process directed graphs only.
Therefore, when referring to a graph, the qualifier ‘directed’ is implied unless stated otherwise.

Subgraph

Definition 2. A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if and only if V ′ ⊆ V and
E′ ⊆ E. Given a set V ′ ⊆ V , the subgraph of G induced by V ′ is the graph G′ = (V ′, E′) where
E′ = {(vi, vj) ∈ E : vi, vj ∈ V ′}.
(from [7])

Path and path length

Definition 3. A path from vertex v0 to vertex vk in G, denoted v0
∗−→ vk, is a (possibly empty)

sequence of edges of the form 〈(v0, v1), (v1, v2), . . . , (vk−1, vk)〉, where each edge is in E. The length
of a path is the number of edges in it. A path from v0 to vk is non-null, denoted v0

+−→ vk if its length
is positive. A path is simple if all edges and vertices on the path, except possibly the first and the
last vertex, are distinct.
(adapted from [24])

Cycle, acyclic

Definition 4. A cycle is a non-null simple path that begins and ends at the same vertex. A graph
that contains no cycles is acyclic.
(from [24])

For most algorithms and data structures described in this thesis, graphs are not required to be
acyclic. Therefore, unless stated otherwise, it is assumed graphs may contain cycles.

2

CHAPTER 1. INTRODUCTION 1.3. TRANSITIVE CLOSURE

Adjacency matrix

Definition 5. An adjacency matrix M of a graph G = (V,E) is a |V | × |V | Boolean matrix such
that M [i, j] is true if and only if (vi, vj) ∈ E (vi, vj ∈ V).
(adapted from [24])

Adjacency matrices provide an O(1) lookup time to determine the existence of an edge, but
generally require O(|V |2) memory. Enumerating all edges is an O(|V |2) time operation. For large
graphs it is not feasible to store adjacency information using an adjacency matrix. For example:
provided that the adjacency matrix is allowed to take up to 512 MB of memory, the graph can
consist of at most 64,000 vertices.

Adjacency list

Definition 6. An adjacency list L of vertex v ∈ V is a list that contains the vertices adjacent to v.
The adjacency list representation of a graph G consists of the adjacency lists of its vertices.
(from [24])

In contrast to an adjacency matrix, adjacency lists of a graph G use only O(|E|) memory in
total. For most graphs, |E| � |V | · |V | and therefore, adjacency lists generally take less memory
to represent a graph. On the other hand, the list does not provide an O(1) query time. Provided
the list is sorted, the query time is O(log2(|V |)). For an unsorted list, the query time increases to
O(|V |). However, enumerating all edges in a graph takes only O(|E|) time.

Topological sort

Definition 7. A topological sort of a directed acyclic graph G = (V,E) is a linear ordering of all
its vertices such that if G contains an edge (u, v), then u appears before v in the ordering.
(from [7])

Note that a cyclic graph H = (V,E) can never have a consistent topological sort, since it
is impossible to impose a linear ordering on all vertices in a cycle such that u appears before v
whenever an edge (u, v) exists. Also note that a graph can have more than one valid topological
ordering.

1.3 Transitive closure

1.3.1 Introduction and definition

The transitive closure of a graph G = (V,E) is defined as a derived graph G+ = (V,E+), in which
E+ denotes the smallest transitive relation that contains E. In other words: the transitive closure
G+ will explicitly contain an edge (vi, vj) if and only if a path vi

+−→ vj exists in G. The process of
computing the transitive closure of a graph can be thought of as creating a data structure which
represents reachability information about a graph G.

Figure 1.1 on the following page depicts an example graph G and its transitive closure G+. The
light blue dotted edges represent the edges which were added:

E+ − E = {(a, a), (a, d), (b, c), (b, d), (c, a), (c, c), (d, c), (d, d), (e, a), (e, d)}

Table 1.1 on the next page shows the adjacency lists of both graphs. By definition (and as is
clearly illustrated in the figure and can be deduced from the adjacency lists), the edge set E+ of a
transitive closure G is a superset of the original edge set E of graph G: E ⊆ E+. The vertex set V
is equal for both G and G+.

3

1.3. TRANSITIVE CLOSURE CHAPTER 1. INTRODUCTION

a b

d

c e

f

1

(a) Graph G

a b

d

c e

f

1

(b) Transitive closure G+ of G

Figure 1.1: Original graph G and transitive closure G+

v adjacent vertices
a c
b a, f
c d
d a
e c, e, f
f

(a) Adjacency lists of vertices in graph G

v adjacent vertices
a a, c,d
b a, c,d, f
c a, c, d
d a, c,d
e a, c,d, e, f
f

(b) Adjacency lists of vertices in G+

Table 1.1: Adjacency lists of vertices from graphs G and G+

1.3.2 Reflexive transitive closure

The reflexive transitive closure G∗ = (V,E∗) is closely related to the ‘regular’ transitive closure.
The set of edges E+ (of the regular transitive closure) contains an edge (vi, vj) if and only if a path
vi

+−→ vj exists in G, i.e. null paths are excluded. The reflexive transitive closure does not exclude
null paths, hence E∗ contains an edge (vi, vj) if and only if a path vi

∗−→ vj exists in G. Note that
E+ ⊆ E∗. These additional edges in E∗ do not introduce any significant additional complexity to
the process of computing the transitive closure.

Some publications (including [18, 19], described in Section 2.3) and books refer to the reflexive
transitive closure simply as transitive closure. The research described in this thesis primarily deals
with non-reflexive transitive closures. Unless mentioned otherwise, reflexivity is not implied.

1.3.3 Types of queries

Different problems ask for different types of reachability information. In general, the following types
of queries can be identified:

� Single pair reachability queries:
given two vertices vi, vj ∈ V , does there exist an edge (vi, vj) ∈ E+?

� Single source reachability queries:
given a vertex vi ∈ V , enumerate all vertices vj ∈ V for which (vi, vj) ∈ E+;

� Multi-source reachability queries:
given a set of vertices W ⊆ V , which vertices are reachable from W?

When certain query characteristics are known beforehand, trivial pruning techniques can be
applied (as described in Section 2.2.6 on page 16) to decrease the amount of time and memory

4

CHAPTER 1. INTRODUCTION 1.4. CONTRIBUTIONS

required to compute and store the data structures. However, this thesis primarily focuses on data
structures which are capable of answering any type of query for each and every vertex (or pair of
vertices) in a graph. In order to be able to do so, a representation of the full transitive closure needs
to be computed and stored.

1.3.4 Challenges

As will be shown in Chapter 2, it is not particularly hard to extract reachability information from a
graph. Challenges primarily lie within finding ways to store the transitive closure of a graph using
only a limited amount of memory.

In general, two extreme approaches can be identified:

� Use no memory for data structure, spend a lot of time on queries
This approach does not involve any preprocessing of the graph and typically uses O(|V | +
|E|) time per query source by performing a DFS/BFS on demand. Clearly, this approach is
infeasible when a large amount of queries needs to be processed.

� Use a lot of memory, answer queries very fast
By preprocessing the graph and storing reachability information using an |V | × |V | matrix,
query time can be highly optimised. The most extreme approach (using a reachability ma-
trix) typically uses O(|V |2) memory and provides an O(1) time performance for a single-pair
reachability query.

1.4 Contributions

The main contributions of this thesis can be summarised as follows:

� The usage of bit vector compression is suggested, in order to reduce the amount of memory
required to store reachability information;

� A new fine-grained run-length compression scheme for bit vectors is introduced, suitable for
compressing reachability information;

� The performance of the new compression scheme is evaluated by theoretical analysis and by
experiments on graphs;

� Using both randomly generated and real-world graphs, multiple approaches to computing and
storing a transitive closure are compared.

1.5 Structure of the thesis

After having introduced both the concept of reachability and the definition of transitive closure in
this chapter, this thesis will focus on describing prior work in Chapter 2. This ranges from a short
description of the Floyd-Warshall algorithm (1959 – 1962, [12,29]) to compute the transitive closure
of a graph, to more recent publications on computing and efficiently storing a transitive closure.

In Chapter 3, a new way of storing reachability information by means of bit vector compression
is introduced. This includes a description of an existing bit compression scheme, but mainly focuses
on the introduction of a newly designed scheme.

Chapter 4 describes a large number of experiments carried out using a number of different data
structures and algorithms from Chapters 2 and 3. Graphs of varying sizes and from different sources
are processed, including randomly generated graphs. The different approaches are compared in
terms of memory usage, construction time and query time.

Finally, all theoretical and experimental results are wrapped up in Chapter 5. This chapter also
poses some open questions and describes some suggestions for future research.

5

Chapter 2

Prior work

2.1 Floyd-Warshall

2.1.1 Introduction

The Floyd-Warshall algorithm for all-pairs shortest path computation was described independently
by both Robert Floyd [12] and Stephen Warshall [40] in 1962. Roughly the same algorithm was
published three years earlier by Bernard Roy [29], therefore literature sometimes refers to the Floyd-
Warshall algorithm as the Roy-Floyd algorithm or Roy-Floyd-Warshall. The total running time of
the algorithm is Θ(|V |3), whilst using Θ(|V |2) memory. Although these figures render this approach
unusable for processing large graphs, the algorithm is briefly described in this section for it is
considered to be the first algorithm capable of extracting reachability information from a graph.

The algorithm is a textbook example of dynamic programming and computes the shortest path
(which can be infinite, or better: non-existing) between every pair of vertices in a graph within
Θ(|V |3) time. An edge length can be assigned to every edge, but this additional information is
irrelevant when only the transitive closure is of interest. Therefore, edge lengths are fixed to 1 in
this short overview of the algorithm.

2.1.2 The algorithm

The algorithm is best explained by expressing it as a recursive function. Let shortPath(k,i,j)
denote the shortest path from vertex vi ∈ V to vj ∈ V , using only vertices v1, . . . , vk ∈ V .

Algorithm 1 Floyd-Warshall’s algorithm

shortPath(0, i, j) =

{
∞ if (i, j) /∈ V
1 if (i, j) ∈ V

shortPath(k, i, j) = min(
shortestPath(k − 1, i, j),
shortestPath(k − 1, i, k) + shortestPath(k − 1, k, j)

)

The function shortPath is called for every pair (vi, vj) starting with k = 0, storing the path
lengths in a memoisation table (sometimes referred to as dynamic programming table). Note that
at time k is still 0, most path lengths are probably infinite. After each iteration, k is increased by
1 and more paths will emerge. When k = n, all paths have been analysed and the algorithm has
finished.

The process is based on the following two important observations:

7

2.2. EXPLOITING STRONGLY CONNECTED COMPONENTS CHAPTER 2. PRIOR WORK

1. k = 0 is the recursion base: it defines the case in which a path from vi to vj is not allowed to
be routed via any other intermediate vertex. Obviously, such a path exists if and only if an
edge (vi, vj) exists in edge set E.

2. When increasing k to k + 1, two situations might occur:

(a) The shortest path only uses intermediate vertices in {v1, . . . , vk}, the addition of vk+1 to
the set of allowed intermediate vertices did not yield a new shorter path;

(b) A shorter path emerges, using intermediate vertex vk+1. This path consists of two parts:
a sub path from vi to vk+1 and a sub path from vk+1 to vj .

After the last pass, the algorithm has produced the memoisation table for k = n. In other words:
all vertices in the graph have been taken into consideration. Using this table, not only the shortest
path from any pair of vertices (vi, vj) is known, but it is also possible to reconstruct this path using
regular dynamic programming techniques, which lie beyond the scope of this thesis.

2.1.3 Analysis

The most significant advantage of the Floyd-Warshall algorithm over the other algorithms and data
structures presented in this thesis, is that it provides the length of the shortest paths together with
a way of actually reconstructing the paths. However, when answering reachability queries, the path
length is not of any interest, nor is the exact routing of the path. Especially when dealing with very
large graphs, the algorithm would yield an extremely long processing time and use significantly more
memory when compared to the other approaches. Therefore, the Roy-Floyd-Warshall algorithm has
not been included in the experimental analysis in this thesis.

2.2 Exploiting strongly connected components

2.2.1 Introduction

Computer scientists and mathematicians have endeavoured to minimise the processing time of a di-
rected graph and the amount of memory required to store the transitive closure. Avoiding performing
redundant computations is considered to be one of the most important challenges in constructing a
transitive closure. Especially the generation of duplicate edges (edges which do not introduce any
additional reachability information) turns out to be a major waste of time and memory. It has
been shown [13] that the majority of duplicate edges is caused by the existence of strongly connected
components. Hence, finding and merging these components can help in further optimising processing
time and memory usage.

2.2.2 Strongly connected components

A strongly connected component consists of one or more vertices which are all fully connected to
each other. Therefore, all vertices in the component can reach a common set of vertices outside the
component (i.e., the vertices share the same reachability information).

The formal definition of a strongly connected component follows from the definition of the con-
cepts strongly connected and strongly connected subgraph. All three definitions are included below:

Definition 8. Two vertices vi, vj ∈ V are strongly connected if and only if there exists a path
vi

∗−→ vj and a path vj
∗−→ vi.

Definition 9. A strongly connected subgraph G′ = (V ′, E′) of G is a subgraph (see Definition 2
on page 2) of G induced by V ′ in which every pair of vertices vi, vj ∈ V ′ is strongly connected.

Definition 10. A maximal strongly connected subgraph or strongly connected component G′ =
(V ′, E′) of G is a strongly connected subgraph of G, which can not be extended by adding one or more
additional vertices vk from V to V ′ whilst preserving the property of G′ being a strongly connected
subgraph of G.

8

CHAPTER 2. PRIOR WORK 2.2. EXPLOITING STRONGLY CONNECTED COMPONENTS

It is important to observe that every vertex vi ∈ V belongs to exactly one strongly connected
component. Furthermore, would every strongly connected component be contracted to a single
vertex, the resulting graph (called condensed graph, condensation graph or simply condensation) is
acyclic. Detailed proofs of these observations are provided in [34].

Following from Definitions 8 to 10 on the facing page and the relevant observations, it is very
likely that computation of reachability information of a graph G can be optimised (both in terms of
memory usage and construction time) by using the condensation of G instead of G itself.

2.2.3 Tarjan’s algorithm

Introduction

Before introducing one of the most widely referenced algorithms for constructing a transitive closure,
it is important to have seen the algorithm on which it is based: Tarjan’s algorithm. The procedure
described by Robert Tarjan [34] in 1972 efficiently (within O(|V | + |E|) time) discovers strongly
connected components of a graph by conducting a Depth First Search (see [7], pages 540-549) on a
graph. Although this thesis refers to ‘Tarjan’s algorithm’. the procedure described in the paragraphs
below incorporates improvements suggested by Esko Nuutila in his PhD thesis [24].

The algorithm – textual description

The algorithm uses a series of bookkeeping data structures to detect strongly connected components
in a graph G = (V,E):

� An array of components C to store the final component for each vertex v ∈ V ;

� A stack of vertices S. The stack will store vertices which were visited by the DFS procedure,
but which were not yet assigned a final component;

� An array of integers D to store the DFS sequence number of each vertex. Vertices will be
assigned a sequence number in topological order;

� An array of vertices R to store the most suitable candidate component root (see below) for
each vertex v ∈ V .

The most important notion of Tarjan’s algorithm is that of a candidate component root (or CCR).
Since no complete knowledge of the topology of the graph is available at the time of traversing the
graph, it is most certainly not possible to identify a component once having seen its first vertex.
Hence, every vertex which might be the first member of a new component is referred to as the CCR.
Moreover, every candidate component is identified by its CCR. Note that during graph traversal,
the algorithm might discover that two distinct candidate components should be merged into a single
component. In that case, the value of D (DFS sequence number) of both CCR vertices is compared.
The CCR with the largest value of D will be discarded in favour of the other CCR. In other words:
the most recently detected candidate component is discarded in favour of the vertex which was
discovered first.

Once a the DFS call has been returned to a vertex vi by one of its children vj , vi should check:

1. whether vj has obtained knowledge about a more suitable CCR, i.e.:
D[CCR[vj]] < D[CCR[vi]], and

2. whether CCR[vj] is a valid CCR for vi (see below).

The value CCR[vj] is valid for vi if and only if vi and vj belong to the same component. The
two vertices belong to the same component if and only if C[vj] (representing the final component of
vj) is still undefined. If CCR[vj] < CCR[vi] and C[vj] = undefined, the value CCR[vi] should be
replaced: CCR[vi] := CCR[vj].

After having processed all of its children, vi has obtained sufficient knowledge about the relevant
graph topology to be able to decide whether or not vi is a final component root. If none of the
children has provided vi with a more suitable CCR (i.e., CCR[vi] has not been changed, vi is still
its own CCR: CCR[vi] = vi), vi will create a new component c and pop vertices W ⊆ V off stack S
until Top(S) = vi. These vertices belong to the new component c, therefore: ∀vj ∈W : C[vj] := c.

9

2.2. EXPLOITING STRONGLY CONNECTED COMPONENTS CHAPTER 2. PRIOR WORK

For a more technical description and proofs of correctness, please refer to the original paper
“Depth-first search and linear graph algorithms” by Robert Tarjan [34], as well as [24].

The algorithm – pseudocode

The following pseudocode shows the details of Tarjan’s DFS procedure:

Algorithm 2 Tarjan’s algorithm

1: procedure DfsVisit(v)
2: CCR[v]← v . initially, v is its own CCR
3: C[v]← Nil . the final component of v is undefined
4: D[v]← d++ . store DFS sequence number of v
5: for all w : (v, w) ∈ E do . loop over all children of v
6: if w not visited then DfsVisit(w) . call DFS on child w (if not visited yet)
7: if C[w] = Nil and D[CCR[w]] < D[CCR[v]] then
8: CCR[v]← CCR[w] . update CCR of v if necessary
9: end if

10: end for
11: if CCR[v] = v then . after DFS, check if v is still its own CCR
12: C[v]← new component
13: while D[Top(S)] > D[v] do . pop vertices off the stack
14: w ← Pop(S)
15: C[w]← C[v]
16: end while
17: else
18: Push(v, S) . push v on stack for later processing
19: end if
20: end procedure
21: procedure main(G = (V,E))
22: for all v ∈ V do
23: if v not visited then DfsVisit(v) . initiate DFS on vertex v
24: end for
25: end procedure

Example

The following step-by-step example and the graph depicted in Figure 2.1a on the next page are
adapted from [24]. Note that the example provided below only contains the steps processing the
first 6 vertices. The full list of steps can be found in Appendix A on page 57.

1. DfsVisit(a) – Visit vertex a:

(a) Mark a as CCR of itself: CCR[a] = a, store DFS sequence number 1 for a: D[a] = 1

(b) Iterate over adjacent vertices: DfsVisit(b)

2. DfsVisit(b) – Visit vertex b:

(a) Mark b as CCR of itself: CCR[b] = b, store DFS sequence number 2 for b: D[b] = 2

(b) Iterate over adjacent vertices:
i. Adjacent vertex a has been visited before, not calling DfsVisit

C[a] = Nil and D[CCR[a]] < D[CCR[b]] (1 < 2),
therefore b inherits the CCR of a: CCR[b]← CCR[a] (thus, CCR[b] = a)

ii. Adjacent vertex c has not been visited before: DfsVisit(c)

3. DfsVisit(c) – Visit vertex c:

(a) CCR[c] = c, D[c] = 3

10

CHAPTER 2. PRIOR WORK 2.2. EXPLOITING STRONGLY CONNECTED COMPONENTS

(b) Iterate over adjacent vertices:
i. Adjacent vertex b has been visited before, not calling DfsVisit

C[b] = Nil and D[CCR[b]] < D[CCR[c]] (1 < 3),
therefore c inherits the CCR of b: CCR[c]← CCR[b] (thus, CCR[c] = a)

ii. Adjacent vertex d has not been visited before: DfsVisit(d)

4. DfsVisit(d) – Visit vertex d:

(a) CCR[d] = d, D[d] = 4

(b) Iterate over adjacent vertices: DfsVisit(e)

5. DfsVisit(e) – Visit vertex e:

(a) CCR[e] = e, D[e] = 5

(b) Iterate over adjacent vertices:
i. Adjacent vertex d has been visited before, not calling DfsVisit

C[d] = Nil and D[CCR[d]] < D[CCR[e]] (4 < 5),
therefore e inherits the CCR of d: CCR[e]← CCR[d] (thus, CCR[e] = d)

(c) No more adjacent vertices. CCR[e] = d(6= e), therefore push e on stack S: S = {e}
(d) Return DFS call to d

6. Continue processing at vertex d

(c) No more adjacent vertices left. CCR[d] = d, therefore d becomes final component root
i. Create a new component: C[d] = new component
ii. Stack S = {e}, pop component vertices off the stack:

Pop e→ C[e] = C[d]
S = {}

(d) Return DFS call to c

7. Continue processing at vertex c

(c) No more adjacent vertices left. CCR[c] = a(6= c), therefore push c on stack S: S = {c}

a

fb h

c

d e

g i

j

C4

C2

C1 C3

1

(a) Graph G

Vertex Adjacency list Comp.
a {b, f, h} C4

b {a, c} C4

c {b, d} C4

d {e} C1

e {d} C1

f {g} C2

g {d, f} C2

h {i} C4

i {c, e, h, j} C4

j {} C3

(b) Adjacency lists of G

Figure 2.1: Example graph (adapted from [24]) consisting of 10 vertices residing within 4 strongly
connected components

11

2.2. EXPLOITING STRONGLY CONNECTED COMPONENTS CHAPTER 2. PRIOR WORK

(d) Return DFS call to b

8. . . .

(continued in Appendix A on page 57)

Reverse topological order

At this point, it is important to notice that Tarjan’s algorithm will process the strongly connected
components in a reverse topological order (see Definition 7 on page 3). Suppose Cl is reachable
from Ci via some path p = {(Ci, Cj), · · · , (Ck, Cl)}, then Tarjan’s algorithm will detect Cl prior to
detecting Ci. Intuitively, this means that the algorithm will travel as ‘deep’ as possible (after all, it
is conducting a depth first search) and start wrapping up strongly connected components on its way
back. This property will turn out to be very useful when processing reachability information.

2.2.4 Nuutila’s algorithm

Introduction: merging reachability information

Tarjan’s algorithm is one of many ways to detect strongly connected components, but the procedure
itself does not yield a result which directly provides us with reachability information. Of course it is
possible to conduct another depth first search pass on the condensed graph resulting from Tarjan’s
algorithm to extract the wanted information. However, in 1995, Nuutila [24] introduced a significant
extension to Tarjan’s algorithm which extracts reachability information from an input graph without
requiring an additional pass over the graph. In this thesis, the procedure Stack TC described by
Nuutila in [24] will be referred to as Nuutila’s algorithm.

Recall that Tarjan’s algorithm detects the strongly connected components (or simply ‘compo-
nents’) of the graph in reverse topological order. Hence, the component which is to be detected first
(denoted C0) can never reach any other component. In general: for i < j, a component Cj can never
occur in the successor set of a component Ci.

Furthermore – again because of the order in which the components are detected – it is clear that
the successor set of a component Ci can be constructed by merging the successor sets of its adjacent
components. A very simple illustration of the process of merging reachability information is shown
in Figure 2.2.

C5 C3 C1

C2C4

1

(a) A condensation graph G′

Comp. Reachability information
C1 R(C1) = ∅
C2 R(C2) = ∅
C3 R(C3) = R(C1) ∪R(C2) ∪ {C1, C2}
C4 R(C4) = ∅
C5 R(C5) = R(C3) ∪R(C4) ∪ {C3, C4}

(b) Reachability information

Figure 2.2: Merging reachability information R(Ci) for components in a condensed graph G′

Algorithm description

The crux of Nuutila’s algorithm lies within the detection of edges between components while travers-
ing the graph to detect the components. Edges between components are generally referred to as
inter-component edges – e.g. (a, f), (c, d), (g, d), (i, e) and (i, j) in the example graph depicted in
Figure 2.3 on the facing page.

Nuutila’s algorithm employs an extra stack to store these inter-component edges at the moment
they are encountered during graph traversal. At the time a new component is constructed by its

12

CHAPTER 2. PRIOR WORK 2.2. EXPLOITING STRONGLY CONNECTED COMPONENTS

final component root, it is possible to iterate over the adjacent components by popping the correct
number of components from the stack. In the same pass, reachability information of all adjacent
components can be merged to construct the aggregated reachability information which is to be stored
in the newly created component.

a

fb h

c

d e

g i

j

C4

C3

C1 C2

1
Figure 2.3: Inter-component edges (dotted red) in the example graph

Pseudocode

Nuutila’s algorithm uses four additional data structures for bookkeeping purposes:

� A stack of components SC . Note that the vertex stack S as described in Section 2.2.3 on
page 9 will be called SV from now on;

� An array of integers H to keep track of the height of stack SC during graph traversal;

� An array of booleans L to record self-loops of vertices;

� A vector of reachability data structures R for strongly connected components.

The algorithm can use various types of data structures (e.g. a lists of integers or reachability
bit vectors) to store the actual reachability information of strongly connected components. Sec-
tion 2.2.5 on the following page contains an extensive description of a number of different types of
data structures.

Algorithm 3 on page 15 lists the pseudocode for Nuutila’s algorithm. An extensive step-by-step
walkthrough using the running example graph is omitted, since the algorithm does very much look
like Tarjan’s algorithm of which a step-by-step description is included in Appendix A. However,
there are some parts of the algorithm which might need further explanation:

l. 17 A forward edge is an edge (vi, vj) whilst a non-null path vi
+−→ vj was already discovered earlier.

A forward edge does not introduce any additional knowledge of the graph topology (regarding
reachability information), and can therefore be ignored.

l. 24 In a regular transitive closure (as opposed to a reflexive transitive closure) an edge (v, v) ∈ E+

only exists if and only if a non-null path v
+−→ v exists in the original graph. When using a

condensed graph to optimise transitive closure computation, this property is to be preserved.
Therefore, it is important to realise that there exist two distinct cases in which a strongly
component Ci can reach itself:

13

2.2. EXPLOITING STRONGLY CONNECTED COMPONENTS CHAPTER 2. PRIOR WORK

1. Ci consists of only a single vertex v and a self-loop (v, v) ∈ E =⇒ Ci can reach itself;

2. Ci consists of > 1 vertices =⇒ Ci can reach itself.

A strongly connected component consisting of only a single vertex is sometimes called a trivial
strongly connected component. Would the one and only vertex v of a trivial component Ci

not have a self-loop (i.e. (v, v) /∈ E), then Ci should not appear in its own successor set.
Nuutila’s algorithm will initialise the reachability information (successor set) of a newly created
component C[v] on line 25 or 27, depending on whether the component is supposed to appear
in its own successor set or not.

l. 32 On this line, the algorithm checks whether an adjacent component X already appears in the
successor set of the newly created component C[v], in order to prevent merging the same
successor sets twice. This check highly depends on the lookup performance of the successor
set implementation. In case a lookup of X in C[v] would yield higher costs than conducting a
possibly duplicate merge operation, it is imperative that the check should be removed.

Run-time analysis

Just like Tarjan’s, the performance of Nuutila’s algorithm highly depends on the topology of the
input graph. Furthermore, the implementation of the successor set data structure is of utmost
importance. Nuutila provides a very detailed asymptotic run-time analysis in his thesis, in which is
shown that the algorithm runs in O(|V | · |E|+ |V |2) time when using simple data structures like bit
vectors or integer lists. Section 2.2.5 provides an overview of popular data structures to represent
successor sets.

2.2.5 Representing successor sets

Algorithms for constructing a transitive closure highly depend on the performance of the underlying
data structure used to represent successor sets. In particular, algorithms like Nuutila’s depend on
the time it takes to merge two or more of these successor sets. Although almost all data structures
will perform that operation in O(|V |) time, the actual time it takes varies quite significantly as is
shown in Chapter 4 on page 33.

This section briefly describes a number of fairly well known data structures to represent successor
sets, including their (dis)advantages. As is often the case in computer science, choosing a data
structure boils down to making a trade-off between time and memory.

Bit vectors

The most significant advantage of using bit vectors to represent successor sets, is the speed with
which computers can merge bit vectors. Basically, the merge operation boils down to performing a
logical or on a series of bit vectors. Another advantage which is most certainly worth mentioning,
is the O(1) lookup time of a random bit in the bit vector.

Unfortunately, bit vectors can grow extremely large, since it is required to store a 0-bit for every
non-existing edge as well. From that perspective, bit vectors grow linearly to the number of vertices
|V | of a graph, rather than the number of edges |E| as most other data structures do. Storing all
bit vectors will therefore use O(|V |2) memory.

Lists of integers

Although storing a successor sets as a list of integers would use an amount of memory which will
grow linearly in the number of edges (rather than the number of vertices), representing a single
edge will typically require 32 bits. The lookup time is O(log2(|V |)) for sorted lists and O(|V |) for
unsorted lists.

14

CHAPTER 2. PRIOR WORK 2.2. EXPLOITING STRONGLY CONNECTED COMPONENTS

Algorithm 3 Nuutila’s algorithm

1: procedure Nuutila(v)
2: CCR[v]← v . initially, v is its own CCR
3: C[v]← Nil . the final component of v is undefined
4: D[v]← d++ . store DFS sequence number of v
5: Push(v, SV) . push v on vertex stack
6: H[v]← Height(SC) . store height of component stack SC

7: L[v]← false . possible self-loop of v still to be detected
8: for all w : (v, w) ∈ E do . loop over all children of v
9: if w = v then

10: L[v]← true . record self-loop of v
11: else
12: if w not visited then DfsVisit(w) . call DFS on child w
13: if C[w] = Nil then
14: if D[CCR[w]] < D[CCR[v]] then
15: CCR[v]← CCR[w] . update CCR of v
16: end if
17: else if (v, w) is not a forward edge then
18: Push(C[w], SC) . inter-component edge
19: end if
20: end if
21: end for
22: if CCR[v] = v then . after DFS, v is still its own CCR
23: C[v]← new component
24: if Top(SV) 6= v or L[v] then
25: R[C[v]]← {C[v]} . initialise reachability info: self-loop
26: else
27: R[C[v]]← ∅ . initialise reachability info: none
28: end if
29:

30: while Height(SC) 6= H[v] do . process adjacent components
31: X ← Pop(SC)
32: if X /∈ R[C[v]] then . prevent performing duplicate operations
33: R[C[v]]← R[C[v]] ∪R[X] ∪ {X} . merge reachability information
34: end if
35: end while
36: repeat . pop the vertex stack SV

37: w ← Pop(SV)
38: C[w]← C[v]
39: until w = v
40: end if
41: end procedure
42: procedure main(G = (V,E))
43: for all v ∈ V do
44: if v not visited then DfsVisit(v) . initiate DFS on vertex v
45: end for
46: end procedure

15

2.3. USING CHAIN AND PATH DECOMPOSITION CHAPTER 2. PRIOR WORK

Interval lists

Interval lists are very similar to lists of integers, but are capable of storing contiguous sequences of
integers much more efficiently by representing the sequence by a pair consisting of the first and the
last integer. For example, the integer list {2, 3, 4, 5, 8, 9, 10, 11} can be compressed by representing it
as an interval list: {(2, 5), (8, 11)}. Although interval lists are very suitable for storing a contiguous
sequence of integers, using them for storing non-contiguous sequences will not decrease memory
usage. It is shown in [24] that the maximum number of intervals required to store a sequence of
integers S ⊆ {1, 2, . . . , n} equals dn2 e.

Recall that components of a graph are created in a reverse topological order by the DFS process.
It is therefore very likely that the integer list representation will consists of sequences of contiguous
numbers. Figure 2.2 on page 12 might provide some intuition regarding this observation. Using
interval lists to represent successor sets can therefore turn out to be very effective.

Assuming the interval list is sorted (which is a reasonable assumption, since the interval lists of
components are created in reverse topological order), the query time is O(log2(|L|)) ≤ O(log2(|V |))
(where |L| denotes the number of intervals in the interval list).

2.2.6 Graph pruning

As stated before, this thesis primarily describes data structures and algorithms for computing and
storing reachability information for all pairs of vertices in a graph. The procedure Main (starting
one line 42 of Algorithm 3 on the previous page) therefore considers every single vertex v of graph
G = (V,E). However, if reachability information of only a limited subset of vertices W ⊆ V is
considered to be of interest, it is sufficient to call procedure Nuutila using only vertices from W .
Note that it is hard to determine beforehand whether this pruning technique will actually yield
a better result, since a single call to the Nuutila DFS procedure might process the entire graph
anyway.

2.3 Using chain and path decomposition

2.3.1 Introduction

A popular technique of compressing a transitive closure representation is using a path decomposition
or chain decomposition [14, 17–19, 30] of a graph. Note that there does not seem to exist a broadly
agreed definition of a path decomposition of a directed graph.

2.3.2 Path-Tree

Introduction and criticism

The Path-Tree algorithm by Jin et al. [19] presented at the SIGMOD conference on management of
data in 2008 introduces a new technique for computing and storing a representation of the transitive
closure. This thesis will describe the approach described by Jin et al. in considerable detail, since
it is one of the most recent and significant publications on this topic. Furthermore, it illustrates the
use of path decomposition for compressing the transitive closure.

Jin et al. provide the following definition of a path decomposition:

“Let G = (V,E) be a directed acyclic graph. We say a partition P1, · · · , Pk of V is
a path decomposition of G if and only if P1 ∪ · · · ∪ Pk = V and Pi ∩ Pj = ∅ for any
i 6= j. We also refer to k as the width of the decomposition.”

However, this definition does not provide a solid definition of a path; it solely defines a partitioning
of vertices. This partitioning is not bound by the structure of the graph (edges) and allows to divide
the vertex set in groups of totally unconnected vertices. Although the authors do not present a
proper definition of a path decomposition, Figure 2.4a on page 18 provides an illustration of the

16

CHAPTER 2. PRIOR WORK 2.3. USING CHAIN AND PATH DECOMPOSITION

concept. A path is actually a sequence of vertices, rather than just a partition: each vertex has an
unique position in the path, defined by the topological order of the graph.

Algorithm description

Jin et al. present a new data structure called Path-Tree, which consists of a tree shaped spanning
subgraph of a directed acyclic graph. A labelling for the graph is devised, which allows efficient
query processing. The approach consists of a number of steps, of which an extensive explanation
and proofs can be found in [19]. An overview of these steps is provided below.

0. If the input graph G′ = (V ′, E′) is not acyclic, apply Tarjan’s algorithm to construct the
condensed graph G = (V,E) of G′. Otherwise, G = G′. This transformation is not considered
to be a part of the algorithm, it is merely a preprocessing step.

1. Construct a path decomposition P = P1, . . . , Pk of G. By definition, every vertex is part of
exactly one path Pi and can therefore be identified by a tuple (i, s): i denoting the index of
the path, s denoting the v’s relative order (sequence number or sid) within the path. The
vertex which is to appear as the first vertex in the topological ordering of the path is assigned
sequence number 1. The authors introduce an additional notation:

u � v ⇐⇒ v.sid ≤ u.sid and u, v ∈ Pi

Denoting that u precedes (or equals) v in a path Pi. An example of a path decomposition is
depicted in Figure 2.4a on the next page, the dotted edges are edges between paths (sometimes
referred to as inter-path edges).

2. For each pair of paths Pi, Pj (Pi 6= Pj), consider the set of edges EPi→Pj ⊆ E consisting of all
edges of which the tail lies within Pi and the head in Pj (the dotted edges in Figure 2.4 on
the following page). Construct the minimal equivalent edge set ER

Pi→Pj
by removing all edges

from EPi→Pj
which can be removed without affecting the reachability information of vertices

in Pi with respect to vertices in Pj .

An example of a minimal equivalent edge set of a path decomposition is depicted in Figure 2.4b
on the next page. For example, the edge (b, e) is removed in the minimal equivalent edge set,
since b can reach e by using the path b → c → d → e. Note that constructing the minimal
equivalent edge set for every pair of paths does not necessarily remove all redundant edges in
a global sense. For example, edge (b, h) can be considered redundant, since b can reach h by
b→ c→ f → g → h. However, this route consists of vertices from more than two paths, which
is why the edge (b, h) is not considered redundant after processing all pairs of paths.

3. Construct the path graph GP = (VP , EP) based on the path decomposition of G by representing
each path of vertices by a single vertex in GP . The edges in the path graph represent the
inter-path edges from the path decomposition, the weight of an edge (Pi, Pj) ∈ EP equals the
number of vertices in path Pi which can reach vertices in Pj by using edges from the minimal
equivalent edge set ER

Pi→Pj
. For example, both a, b ∈ P1 can reach P2, yielding an edge weight

of 2 for edge (P1, P2) in the path graph. The path graph of the example graph referred to
earlier is shown in Figure 2.4c on the following page.

4. Construct the maximal directed spanning tree GT
P of the path graph GP , as depicted in

Figure 2.4d on the next page.

5. Partition the maximal spanning tree GT
P into separate paths. In the example graph depicted

in Figure 2.4d, only one path can be constructed from the spanning tree: P1, P3, P2. Based
on each of these paths in GT

P , a path-path graph GPP can be constructed, like depicted in
Figure 2.5a on page 19. The path-path graph contains the original vertices (from G) belonging
to the paths P1, . . . , Pn in the maximum spanning tree GT

P , connected by the internal path
edges (between vertices in the same path) and edges from the minimal equivalent edge set.
The path-path graph is used to assign two labels Xi and Yi to every vertex vi ∈ GPP :

17

2.3. USING CHAIN AND PATH DECOMPOSITION CHAPTER 2. PRIOR WORK

a

b

c

d

e

f

g

h

P3P2P1

1

(a) A path decomposition P = {P1, P2, P3}

a

b

c

d

e

f

g

h

P3P2P1

1

(b) The minimal equivalent edge set of path in P

P2

P1

P3

2 2

1

3

1

(c) path graph GP

P2

P1

P3

2

3

1

(d) The maximal directed spanning tree of GP

Figure 2.4: Steps from a path decomposition to the maximal directed spanning tree of a path graph

� All vertices which are members of the same path Pi, will have an identical value of Y .
The value of Y depends on the order in which the paths appear in the path-path graph.
Therefore (based on Figure 2.4d):
a, b ∈ P1 −→ Y = 1
f, g, h ∈ P3 −→ Y = 2
c, d, e ∈ P2 −→ Y = 3

� The X value is assigned to a vertex vi ∈ GPP by conducting a special depth-first search
procedure, keeping track of a counter N (initially N = |V |). A vertex is assigned the
value of N after all its adjacent vertices have been visited, after which the counter is
decreased by one. The DFS starts at the first vertex of the first path of the path-path
graph.
In the example graph, vertex a would be visited first, being the first vertex of path P1.
The DFS procedure prioritises adjacent vertices from the same path over adjacent vertices
from another path. Therefore, vertex b is the next vertex to be visited. From b only h
can be visited, followed by e. Vertex e is the first vertex to be assigned a value for X:
Xe = N = 8. Vertex h does not have any other adjacent vertices left to visit, therefore
Xh = 7 and Xb = 6. Having returned at vertex a, there is a next adjacent vertex f to be
visited: Xg = 5, Xf = 4. The DFS call started at a now ends at a, yielding Xa = 3. A
new DFS procedure is started on the first non-visited vertex, iterating over the path in

18

CHAPTER 2. PRIOR WORK 2.3. USING CHAIN AND PATH DECOMPOSITION

the order specified by the maximal directed spanning tree. It starts at c, yielding Xd = 2
and finally Xc = 1. The values of X and Y which were assigned to the vertices are plotted
in Figure 2.5b.

P1

P2

P3

a b

f g h

c d e

1

(a) The path-path graph GPP of P1 → P3 → P2

X

Y

a b

f g h

c d e

1

(b) The assigned values of X and Y

Figure 2.5: path-path graph and the assignment of values for X and Y

Based on the values of X and Y , the authors present the following lemma:

“Given two vertices u and v in the path-path graph, u can reach v if and only if Xu ≤ Xv

and Yu ≤ Yv (this is also referred to as u dominates v).”

Although this is true for the reachability within the path-path graph GPP shown in Figure 2.5a,
this lemma does not hold for the input graph G. For example, b is able to reach c in G even though
Xb � Xc. This reachability information was lost after removing edges from the path graph GP to
construct its maximal spanning tree (Figure 2.4 on the facing page). To overcome this problem,
the authors suggest to perform a regular on-demand search or to use an auxiliary data structure to
answer queries related to vertices and edges not covered by their data structure.

To reduce the number of edges which are not covered by the data structure, the authors present
the optimal path decomposition problem and map it to the minimum cost flow problem [16]. As
is proved in [19] and also shown in Chapter 4, constructing an optimal path decomposition indeed
improves the compression of the transitive closure representation.

Run-time analysis

Strangely, the authors do not provide a clear asymptotic run-time analysis to explain their claim
[18] of providing an O(mk′) / O(mn) (where m = |E|, n = |V |, k′ = number of paths in path
decomposition of G) upper bound for constructing their data structure.

The authors’ claim (section 2 of [19]) of providing an O(1) query time is most certainly not
substantiated and rather misleading. It is true that this query time can be achieved for parts of the
input graph, but the actual asymptotic time to answer a random query isO(log2(k)) (where k denotes
the number of paths in the path decomposition). Chapter 4 contains an extensive experimental
analysis of the query time, as well as a performance comparison to other approaches.

Note that the Path-Tree data structure is not capable of iterating over the transitive closure, it
can only answer a reachability query regarding two distinct vertices. Tt is very hard to answer a
single or multi-source reachability query using Path-Tree.

2.3.3 3-Hop

The 3-Hop approach was also presented at by Jin et al. at SIGMOD, one year after having introduced
Path-Tree. A detailed description (like that of [19]) goes beyond the scope of this thesis, but 3-
Hop can be considered an interesting approach to transitive closure computation. The crux of the
algorithm lies within finding chains which can be seen as highways of the graph, as is depicted in
Figure 2.6. A possible path from a vertex v to w will try to find a suitable highway (hop 1), take
the appropriate exit (hop 2) and reach w (hop 3).

19

2.4. MATRIX MULTIPLICATION CHAPTER 2. PRIOR WORK

In their paper, the authors emphasise that 3-Hop is particularly suitable or processing directed
acyclic graphs with a relatively large number of edges (a dense graph). This is illustrated in the
paper by a very brief experimental analysis of query time using a limited data set. The authors
do not present an experimental analysis of the construction time of their approach, nor do they
present an extensive comparison to other approaches (like interval lists). Section 4.5.5 contains a
more thorough experimental analysis of 3-Hop, including a comparison with other data structures
and information regarding the construction time of 3-Hop.

a

b

c

d

e

f

g

h

i

1

Figure 2.6: 3-Hop highway

2.4 Matrix multiplication

A very different approach to transitive closure computation, is matrix multiplication. As is shown
in [11,21], the transitive closure of a graph G can be computed using a sequence of self-multiplications
of the |V | × |V | Boolean adjacency matrix of G.

Although a naive approach to matrix multiplication would yield an O(n3) algorithm, the Strassen
[32] (O(nlog2(7)) = O(n2.807)) and Coppersmith-Winograd [6] (O(n2.2376)) algorithms provide a more
interesting asymptotic upper bound. However, the enormous constant coefficient hidden within the
Big-O of the Coppersmith-Winograd algorithm renders the algorithm only usable for graphs of sizes
way beyond the graphs discussed in this thesis [28]. The algorithm described by Strassen – which
also comes with a significant constant – is generally considered to be interesting for matrices with
dimensions > 100 [25].

The construction of the transitive closure adjacency matrix would require a sequence of self-
multiplications of the adjacency matrix of a graph G. However, it has been proved [11,21] that this
sequence of multiplications can be carried out in a highly optimised way. Using this approach –
the description of which lies far beyond the scope of this thesis – the time required to compute the
transitive closure equals the time which is required to perform one Boolean matrix multiplication:
O(n2.2376) using the Coppersmith-Winograd algorithm.

Although the approach of matrix multiplication is a very interesting one, overcoming the practical
problems in an efficient implementation would be a separate research project in itself, which we
defer to future research. Therefore, matrix multiplication has not been implemented and will not
be evaluated in Chapter 4.

20

Chapter 3

Compressing reachability
information

3.1 Introduction

As has been pointed out before, the reverse topological order in which the graph’s strongly connected
components are detected, yields highly clustered reachability information. Hence, the information
can be efficiently represented as interval lists, as described in Chapter 2.

The same chapter also contains a description of the bit vector data structure, pointing out its
main advantages (fast merging of successor lists, O(1) lookup time) and disadvantage (memory
usage). Keeping in mind that reachability information is highly clustered, it is expected that storing
a successor list as a bit vector will yield large sequences of contiguous 0-bits and 1-bits. This property
makes the bit vectors extremely suitable for compression.

Another very important property of the reverse topological order in which the components are
detected is the order in which the subsequent successor lists are constructed. As explained in
Section 2.2.4 on page 12 and depicted in figure 2.2, a component Cj will never occur in the successor
list of a component Ci (i < j, i and j part of a reverse topological ordering). This property opens
the door to run-length encoding (RLE): computing and compressing reachability information at the
same time.

This chapter suggests the usage of bit vector compression for fast and memory-efficient transitive
closure computation. Although the concept of bit vector compression is not innovative, using it for
storing reachability information has not been described in literature before.

There exist many run-length encoding techniques for bit vector compression, which are used in
various fields of research. For example, compressed bit vectors are used in the field of data base
research to compress bit map indices [43] and in the area of energy physics [31]. This chapter
describes an existing technique proposed by Wu et al. in [42]. Furthermore, it introduces a novel
compression scheme with some additional features, derived from the scheme described by Wu et al..

3.2 Word Aligned Hybrid Compression

3.2.1 Introduction

In [42], Wu et al. introduce a new run-length compression scheme called Word Aligned Hybrid
Compression or simply WAH. The scheme processes a stream of uncompressed bits word by word
and stores sequences of bits using a fill word or a literal word.

A fill word is used to compress a contiguous sequence of 1-bits or 0-bits and simply stores the
length of the sequence in multiples of the block size (see below).

21

3.2. WAH CHAPTER 3. COMPRESSING REACHABILITY INFORMATION

A literal word is used whenever a sequence of bits is not contiguous for a sufficient number of
bits, and can therefore not be stored using a fill word. A literal word – as the term suggests – is a
literal copy of the uncompressed bits.

A word is assumed to be of size 32 bits (w = 32), but might consist if any arbitrary number of
bits (like w = 64, as is used in modern x64 computers). The first (most significant) bit of a word in
a WAH compressed bit vector indicates the type of the word: a 1-bit denotes a fill, a 0-bit indicates
a literal word. In a fill word, the second most significant bit is used to denote the fill type (either a
0-fill or a 1-fill). The remaining w− 2 bits are used to store the fill length expressed in multiples of
w− 1, which is referred to as the block size: b = w− 1. In a literal word, all b bits are used to store
one block of uncompressed bits. Figure 3.1 shows an example bit vector and its WAH compressed
representation, using a word size of w = 8 bits (instead of 32) and a block size b = w−1 = 7 (instead
of 31) for illustrational purposes.

Note that the length of a fill is expressed in multiples of the block size, seven in the example
figure. In other words: the compression scheme aligns the words. Although it would have been
possible to express the length of a fill in single bits (which would obviously yield a ‘tighter’ scheme
and a better compression), it would result in significantly higher costs of processing. Wu et al. show
in [42] that their scheme combines the best of two worlds and achieves a significant compression
with low processing costs.

0000011︸ ︷︷ ︸
literal

1100011︸ ︷︷ ︸
literal

1111111 1111111 1111111︸ ︷︷ ︸
1-fill (length 3)

1110000︸ ︷︷ ︸
literal

0000100︸ ︷︷ ︸
literal

0000000︸ ︷︷ ︸
0-fill

0001011︸ ︷︷ ︸
literal

1111111︸ ︷︷ ︸
1-fill

(a) 70 uncompressed bits in 10 blocks of 7 bits

0 0000011︸ ︷︷ ︸
literal

0 1100011︸ ︷︷ ︸
literal

11 000011︸ ︷︷ ︸
1-fill

0 1110000︸ ︷︷ ︸
literal

0 0000100︸ ︷︷ ︸
literal

10 000001︸ ︷︷ ︸
0-fill

0 0001011︸ ︷︷ ︸
literal

11 000001︸ ︷︷ ︸
1-fill

(b) compressed representation of bit vector using 64
bits (8 words of 8 bits)

Figure 3.1: Example of a WAH compressed bit vector

3.2.2 Basic operations

It is clear that the WAH scheme is a run-length encoding scheme: it processes the input bits word
by word, it is always possible to set or clear a bit at the end of the compressed bit vector. At the
same time it is not possible to set or clear bits which were already compressed, since that might
result in having to split a single fill word into multiple pieces (or the other way around). However,
when processing the components of the graph in reverse topological order, there is no need to set
or clear random bits in a bit vector, as long as constructing a new bit vector based on two or more
other bit vectors (by logical or) is possible.

Computing a logical or based on two input bit vectors can be done quite efficiently. In fact,
the operation can be performed at least as fast – and most of the time even faster – than the same
operation on corresponding uncompressed bit vectors, since a large amount of consecutive identical
bits can be processed more efficiently. For transitive closure computation (merging successor lists),
there is no need for any other operation than setting bits and merging bit vectors.

3.2.3 Limitations of WAH compression

The WAH compression scheme combines speed with significant compression, but will only yield a
good result when the input is highly clustered. However, because of the fixed block size, the scheme
will fail when the input does not contain sequences of 1-bits of 0-bits of sufficient length. Take a
look at the following example (w = 32, b = 31):

22

CHAPTER 3. COMPRESSING REACHABILITY INFORMATION 3.3. PWAH

0111111111111111111111111111︸ ︷︷ ︸
0-bit followed by 30 1-bits

1111111111111111111111111110︸ ︷︷ ︸
30 1-bits followed by a 0-bit

Although the bit vector appears to be highly clustered, WAH can do nothing but create two
literal words to represent the bits. This results in an overhead of one bit for every 31 bits, which
equals about 3.2%. The example shows that WAH might end up storing 60 consecutive 1-bits using
uncompressed literal words.

Furthermore, WAH allocates w − 2 bits to express the length of a fill. When dealing with a
word size of 32 bits, 30 bits are allocated to express the fill length, yielding a maximum fill length
of 230 − 1 = 1, 073, 741, 823 blocks (33,285,996,513 bits). For a word size of 64 bits (b = 63), the
maximum fill length grows to 262 − 1 ≈ 4.61× 1018. Most graphs do not have a number of vertices
even close to that amount and therefore, fill lengths will consists of mostly zeroes resulting in a pure
waste of memory.

A smaller block size would result in a more fine grained compression scheme and would solve
both shortcomings described above, which is why we designed Partitioned Word Aligned Hybrid
Compression (or PWAH).

3.3 Partitioned Word Aligned Hybrid Compression

3.3.1 Introduction

This section introduces a novel compression scheme: Partitioned Word Aligned Hybrid compression
– PWAH. It very much resembles the WAH [42] compression scheme, but adds the concept of a
partition: a part of a word which can represent either a fill or a literal. Using partitions, the block
size can be reduced, yielding a significantly more fine-grained compression scheme. The number of
partitions P can vary, therefore PWAH actually is a collection of schemes. Note that the number of
partitions needs to be established beforehand, it is not possible to apply multiple PWAH compression
schemes within a single bit vector.

In PWAH, every word consists of a header (using the P most significant bits) and P partitions.
The header indicates the types of the different partitions: fill or literal. The partitions contain the
actual representation of the uncompressed bits. Consider the following example word, based on a
64 bit word size and four partitions (PWAH-4):

1010︸ ︷︷ ︸
hdr

100000000001011︸ ︷︷ ︸
1-fill: 11 blocks

111010000100101︸ ︷︷ ︸
literal word: 15 bits

000000000010010︸ ︷︷ ︸
0-fill: 18 blocks

000000010000011︸ ︷︷ ︸
literal: 15 bits

The example 64 bit word consists of a header and 4 partitions:
0. Word header: four bits indicating the type of the four partitions. The first partition contains

a fill (denoted by the 1-bit), the second partition contains literal bits (denoted by the 0-bit
in the header), the third partition contains another fill and the fourth partition consists of a
literal. Note that the header does not indicate the type of fill (1-fill or 0-fill).

1. First partition: the header indicates that this partition is a fill partition. The first (most
significant) bit of the partition indicates the fill type: a 1-fill. The remaining 14 bits denote
the length of the fill: 0b00000000001011 = 11 blocks. Since PWAH-4 uses a block size of 15
bits, 11 blocks represent a sequence of 165 1-bits.

2. Second partition: literal block (indicated by header 0-bit) with 15 literal bits.

3. Third partition: the header indicates a fill partition, the first bit of the partition determines
the type: 0-fill. The length of the fill equals 0b00000000010010 = 18 blocks = 270 0-bits.

4. Fourth partition: another literal block containing 15 uncompressed bits.

The 64 bits shown in the example represent a total of 165 + 15 + 270 + 15 = 465 bits. Note
that the compressed bits are still aligned, hence the computational overhead of the compression (as
described in [42]) is still reasonably low.

23

3.3. PWAH CHAPTER 3. COMPRESSING REACHABILITY INFORMATION

3.3.2 Number of partitions

Generally, it is assumed a word consists of 64 bits. To be able to use the 64 bits to their full extent,
only a limited amount of partitions can be considered in order to use every single bit in a word. For
example, consider a PWAH compression scheme using 13 partitions: 13 bits are allocated for storing
the header and 64 − 13 = 51 bits can be used to store partition information of all 13 partitions.
Since partitions are required to have fixed and equal lengths, this scheme will contain 13 partitions
of three bits, using a total of 39 bits. In this situation, 12 bits are left unused.

Let P denote the number of partitions, implying a header size of P bits. The remaining 64− P
bits should be divisible by P , yielding a positive integer result. Enumerating all possible values for
P results in the following table:

P 1 2 3 4 5 6 7 8 9 10 · · · 15 16 · · · 32

64−P

P
63 31 20 1

3
15 11 4

5
9 2

3
7 1

7
7 6 1

9
5 4

10
· · · 3 4

15
3 · · · 1

The divisions with integer results are typeset in bold. Clearly, all powers of 2 (up to and including
25 = 32) qualify for P , which is not surprising:

64− P

P
=

26 − 2k

2k
=

26

2k
− 2k

2k
=

26

2k
− 1 = 26−k − 1

It is evident that 26−k − 1 yields a positive integer result for k ≤ 5.

The numbers in the table shown above represent the number of bits allocated for a single partition.
Although 26−5 − 1 = 1 bit (in the PWAH scheme with 32 partitions) is a perfectly valid number of
bits, it is impossible to indicate both a fill type and a fill length using only a single bit. Therefore,
the PWAH compression scheme with P = 32 partitions is considered to be invalid. The compression
scheme with 16 partitions provides three bits per partition, of which two bits can be used to express
a fill length. This results in a maximum fill length of three blocks (nine uncompressed input bits),
which is considered to be impractical as well.

Note that the fill length in PWAH is expressed in a number of blocks, just like WAH. However,
since the block size depends on the number of partitions, the number of single bits which can
be represented by a fill depends on the number of partitions too. For example, the PWAH-4 fill
100000000001101 and the PWAH-8 fill 1001101 both represent 13 (0b1101) blocks of 1-bits. Since
PWAH-4 implies a block size of 15 bits, 13 blocks of 1-bits actually represent 195 consecutive 1-bits,
whilst a 1-fill of 13 blocks in PWAH-8 (with a block size of seven bits) actually contains 91 1-bits.

Figure 3.2 and Table 3.1 on page 27 provide an overview of the main properties of the different
compression variations (including PWAH-16), based on a word size of 64 bits.

3.3.3 Extended fills

The major disadvantage of PWAH-8 and PWAH-4 over the regular WAH compression, is one of
its advantages at the same time: the limited amount of bits which are allocated for expressing a
fill length. Although in general one definitely does not need 30 bits to express a fill length, 14 bits
(PWAH-4) or seven bits (PWAH-8) might turn out to be insufficient for compressing parts of certain
bit vectors.

Of course it is possible to use two consecutive fill partitions to express a fill at most twice as large,
but a more comprehensive solution would be to concatenate the bits from a number of partitions to
express a fill length as if it were a single fill. We call this concept an extended fill : a fill of which
the length is expressed by using multiple partitions. For example:

0110︸ ︷︷ ︸
hdr

001001001001011︸ ︷︷ ︸
literal: 15 bits

100000000000101︸ ︷︷ ︸
first part of 1-fill

100010100110010︸ ︷︷ ︸
second part of 1-fill

001001010100011︸ ︷︷ ︸
literal: 15 bits

24

CHAPTER 3. COMPRESSING REACHABILITY INFORMATION 3.3. PWAH

The second and third partition of the word shown in the example contain two consecutive 1-fills.
Instead of interpreting the length of the 1-fills separately (0b00000000000101 + 0b00010100110010 =
5 + 1330 = 1335 blocks), the bits expressing the fill length are concatenated to denote:

0b00000000000101︸ ︷︷ ︸
first part

00010100110010︸ ︷︷ ︸
second part

= 83,250 blocks

The preceding 1-bit indicating the fill type was discarded. Note that there is no need to explicitly
mark extended fills as such: each sequence of consecutive fills (of identical type) can be considered
to denote an extended fill.

Using extended fills, the total number of bits which can be used to express a fill length increases
from 14 to 4 × 14 = 56 bits (PWAH-4). This approach effectively eliminates the disadvantage of
PWAH over WAH, whilst maintaining the advantage of providing a more fine grained compression
scheme. The performance of the different PWAH compression schemes is evaluated in Chapter 4 on
page 33.

3.3.4 Introducing the multi-OR operation

The paper by Wu et al. merely sketches a rough outline of a binary or operator in WAH. However,
in case a component Ck has more than two directly adjacent components Ci, . . . , Cj , there are mul-
tiple orders in which the group or of Ci, . . . , Cj can be computed by repeatedly applying the binary
or operator. Consider an example with three adjacent components:

C4 = (C1 ∨ C2) ∨ C3

C4 = (C1 ∨ C3) ∨ C2

C4 = (C2 ∨ C3) ∨ C1

The number of possible ways to process the input bit vectors grows extremely fast. Consider the
following bit vectors containing PWAH-8 compressed reachability information:

C1 = 00000000︸ ︷︷ ︸
header

0101010︸ ︷︷ ︸
literal

· · · · · · · · · · · ·︸ ︷︷ ︸
6 more literals

0101010︸ ︷︷ ︸
literal

C2 = 00000000︸ ︷︷ ︸
header

0101010︸ ︷︷ ︸
literal

· · · · · · · · · · · ·︸ ︷︷ ︸
6 more literals

0101010︸ ︷︷ ︸
literal

C3 = 1︸ ︷︷ ︸
header

1101111︸ ︷︷ ︸
large 1-fill

In the example depicted above, it would be a waste of time to compute the logical or of C1 and
C2 first, since C3 contains a 1-fill of 15 blocks (15 × 7 = 105 bits). Especially when the number of
input components is large, it might be interesting to process multiple compressed bit vectors at the
same time. After all, when encountering a large 1-fill in one of the input bit vectors, it is possible
to skip large parts of the other bit vectors.

Another (practical) advantage of using Multi-or is the fact that it is no longer necessary to
allocate memory to store intermediate results of the sequence of or operations. However, this saving
is only significant when merging a large number of large bit vectors.

Algorithm 4 on page 27 shows a small number of very high-level lines of pseudocode, implementing
the multi-or operation. Note that an actual implementation can become significantly more complex,
the pseudocode merely shows the crux of the idea behind Multi-Or. A few comments on the
pseudocode:

l. 13 Within this for block, two tasks are carried out:

1. The bookkeeping variables belonging to the current input bit vector are updated to make
sure the position within each input bit vector B[i] (word index, partition index, partition
offset, block index) matches the current position in the output bit vector r. For example,
if a 1-fill from input bit vector B[k] has been processed in the previous iteration of the

25

3.3. PWAH CHAPTER 3. COMPRESSING REACHABILITY INFORMATION

main while loop, it is necessary to skip the blocks in the other input bit vectors which
were covered by the 1-fill from B[k].

2. After having skipped over the input bit vector B[i] to the correct position, it is possible
to determine what kind of partition (fill or literal) is available next in B[i]. In order for
the multi-or to work as fast as possible, it is needed to take as large as possible steps:
if a 1-fill is encountered, store its length if it is longer than the longest 1-fill encountered
in this iteration. If a literal is encountered, compute the or with the other literals from
other input bitsets encountered earlier in this iteration. If a 0-fill is encountered, store
its length if it is shorter than the shortest 0-fill encountered so far.

l. 22 If one of the input bit vectors provides a 1-fill, add that fill to the result and update the result
block index rbi by adding the length of the fill.

l. 25 If a 1-fill is not available, but a literal was encountered in one or more of the input bit vectors:
add the combined literal to the result and increase rbi by one (a literal is stored using a single
block).

l. 28 If all input bit vectors point to 0-fills, the shortest 0-fill should be added to the result bit
vector and rbi gets updated.

3.3.5 Runtime and memory usage

Although the experimental results in Chapter 4 show very promising results (regarding both compres-
sion ratio, construction time and lookup time), it is impossible to establish a meaningful asymptotic
worst-case bound. The experiments show that the compression scheme yields a significant reduction
of memory usage compared to other data structures for transitive closures, but it is quite trivial to
construct a bit vector which is not suitable for compression at all. In such cases, PWAH (and WAH,
which actually equals PWAH-2) will cause a small overhead which is linear in the length l of the
original bit vector:

� PWAH-8: The header consists of eight bits, yielding an overhead of ≈ 14.29%;

� PWAH-4: The header consists of four bits, yielding an overhead of ≈ 6.67%;

� PWAH-2: The header consists of two bits, yielding an overhead of ≈ 3.23% (equal to WAH);

� PWAH-1: The header consists of one bit, yielding an overhead of ≈ 1.59%.

Therefore, the memory usage of the compressed bit vector is O(l) (l denotes the number of bits
in the original uncompressed bit vector).

A significant disadvantage of compressed bit vectors over regular bit vectors is the increased
worst case lookup time. Regular bit vectors provide an O(1) look up, because bits are stored at
a fixed offset in memory. However, after having compressed a bit vector, it is no longer possible
to determine the position of a random bit within the bit vector within constant time. Given a bit
index, a scan operation should be conducted considering every single partition. This results in a
lookup time of O(w), w denoting the number of words in the compressed bit vector, growing linearly
in the length l of the original uncompressed bit vector.

Setting and clearing bits is considered to be only possible for bits which have not yet been
compressed by the RLE scheme (i.e. bits which still reside in a buffer). Under this assumption the
operation can be performed in O(1) time. Altering a bit might involve processing (compressing) the
buffer containing uncompressed bits, which can be done in constant time:

� Buffer consists of only 1-bits or 0-bits:

1. Add a fill word to the bit vector or extend the length of the last fill;

2. Set a 1-bit in the word header to indicate the partition contains a fill.

� Buffer consists of a non-contiguous (mixed) set of bits:

1. Add a literal word to the bit vector;

2. Set a 0-bit in the word header to indicate the partition contains a literal.

26

CHAPTER 3. COMPRESSING REACHABILITY INFORMATION 3.3. PWAH

Part. size (= block size) Maximum regular fill length

PWAH-16 3 bits 22 − 1 = 3 blocks = 9 bits
PWAH-8 7 bits 26 − 1 = 63 blocks = 441 bits
PWAH-4 15 bits 214 − 1 = 16, 383 blocks = 245, 745 bits
PWAH-2 31 bits 230 − 1 = 1, 073, 741, 823 blocks = 33, 285, 996, 513 bits
PWAH-1 63 bits 262 − 1 = 4.61× 1018 blocks = 2.91× 1020 bits

Table 3.1: Properties of PWAH compression schemes

Algorithm 4 multi-or on PWAH compressed bit vectors. Section 3.3.4 on page 25 provides an
explanation of the pseudocode

1: procedure Multi-OR(B[0] · · ·B[n− 1])
2: iwi [0] · · · iwi [n− 1]← 0 . current word index of input bit vectors
3: ipi [0] · · · ipi [n− 1]← 0 . current partition index of input bit vectors
4: ipo[0] · · · ipo[n− 1]← 0 . current partition offset (blocks) of input bit vectors
5: ibi [0] · · · ibi [n− 1]← 0 . current block index of input bit vectors
6: r ← empty WAH bit vector . result
7: rbi ← 0 . current block index in result bit vector
8: while true do
9: lof ← undefined . pointer to largest 1-fill

10: szf ← undefined . pointer to smallest 0-fill
11: lit ← 0 . or-value of literals from input bit vectors
12:

13: for all i ∈ {0 · · ·n− 1} do
14: align ibi [i], iwi [i], ipi [i] and ipo[i] to match rbi . See explanation
15: if B[i] out of bounds then skip to next input bit vector
16:

17: if B[i] contains largest 1-fill then lof ← B[i]
18: if B[i] contains smallest 0-fill then szf ← B[i]
19: if B[i] contains literal then lit ← lit ∨B[i]
20: end for
21:

22: if lof is defined then
23: add 1-fill to r
24: rbi ← rbi + length of 1-fill
25: else if lit is defined then
26: add literal partition to r
27: rbi ← rbi + 1
28: else if szf is defined then
29: add 0-fill to r
30: rbi ← rbi + length of 0-fill
31: else
32: break . no more input to process, abort while-loop
33: end if
34: end while
35:

36: return r
37: end procedure

27

3.3. PWAH CHAPTER 3. COMPRESSING REACHABILITY INFORMATION

3.3.6 Adding indices

As was shown, the lookup time of a random bit within a PWAH bit vector takes linear time as
opposed to the constant time it takes to look up a random bit in a regular bit vector. Introducing
an index on a PWAH bit vector might improve the query time significantly.

Assuming that a division of l (number of uncompressed bits in the PWAH bit vector) can be
performed in constant time, the process of looking up a random bit can be improved to O(k) time,
where k denotes the chunk size of the index which does not depend on l. Therefore, the lookup time
on an indexed compressed bit vector is considered to be constant. Introducing indices will increase
memory usage of the compressed bit vector, but only linearly. Hence, the asymptotic memory usage
does not change: O(l).

The concept of indices is illustrated using the following example representing 18,498,645 bits
using two words of 64 bits (PWAH-4):

0100︸ ︷︷ ︸
hdr

001001001001011︸ ︷︷ ︸
literal: 15 bits

100000001010001︸ ︷︷ ︸
1-fill: 81 blocks

100010100110010︸ ︷︷ ︸
literal: 15 bits

001001010101100︸ ︷︷ ︸
literal: 15 bits

0110︸ ︷︷ ︸
hdr

001010100110010︸ ︷︷ ︸
literal: 15 bits

000000001001011︸ ︷︷ ︸
first part of 0-fill

001000100000101︸ ︷︷ ︸
second part of 0-fill

001001010100011︸ ︷︷ ︸
literal: 15 bits

Using the following index (with a chunk size of 1024 bits) it is possible to optimise the lookup
of random bits in the compressed bit vector, by being able to instantaneously jump to a partition
close to the bit:

index position 1 2 3 4 · · · 18,064 18,065
index bit 1,024 2,048 3,072 4,096 · · · 18,497,536 18,498,560
global block 68 136 204 273 · · · 1,233,169 1,233,237
word 0 1 1 1 · · · 1 1
partition 1 2 2 2 · · · 2 2
block within part. 67 51 119 188 · · · 1,233,084 1,233,152

Every index entry points out where a bit with a specific index (multiples of k) resides within
the compressed bit vector. For example, bit 1024 resides within word 0, partition 1, block 67 (note
that the 1-fill partition contains 81 blocks). Now that the bit vector is indexed, a query regarding
some bit j would no longer require a full scan over all partitions. It is possible to look up the closest
smaller indexed bit i in the index by looking at index position b jk c and commence seeking from

the partition in which i resides, until j is encountered. This would require processing at most k
b (b

denoting the block size, 15 in PWAH-4) partitions.
Although introducing indices might reduce the asymptotic time complexity, it is hard to predict

whether it will actually have a noticeable positive effect on the performance of lookups. It might
very well be that indices introduce an overhead which cancels out a possible positive effect. This
will be subject of further evaluation in Chapter 4.

3.3.7 Theoretical analysis of memory usage

Introduction

Although the experiments show interesting results, it is very hard to provide a decent theoretical
foundation for PWAH with a meaningful worst-case analysis. The main difficulty lies within the
fact that its performance largely depends on the topology of the input graph. However, people
have been using interval lists for quite some time [24] and PWAH shows a very clear resemblance
to interval lists when it comes to compression performance. Both approaches highly depend on the
graph topology and the order in which vertices are processed, both are excellent in compressing large
sequences of consecutive 1-bits or 0-bits. Therefore, a short analytical comparison of compression
performance is presented in this section.

28

CHAPTER 3. COMPRESSING REACHABILITY INFORMATION 3.3. PWAH

Worst case PWAH

An interval list can contain intervals starting at arbitrary positions and of arbitrary length: I =
{(i0, j0), (i1, j1), . . . , (in−2, jn−2), (in−1, jn−1)}. It is clear that a single interval resembles a fill par-
tition in PWAH, but only under certain circumstances it is possible to represent a single interval by
a single fill partition. Consider the following example interval list I consisting of a two intervals and
the PWAH-4 bit vector B representing the same information:

I = {(5, 49), (94, 101)}

B = 0101︸ ︷︷ ︸
hdr

000001111111111︸ ︷︷ ︸
literal: 15 bits

(bits 0-14)

100000000000010︸ ︷︷ ︸
1-fill: 2 blocks
(bits 15-44)

111110000000000︸ ︷︷ ︸
literal: 15 bits

(bits 45-59)

000000000000010︸ ︷︷ ︸
0-fill: 2 blocks
(bits 60-89)

0000︸ ︷︷ ︸
hdr

000011111111000︸ ︷︷ ︸
literal: 15 bits
(bits 90-104)

000000000000000︸ ︷︷ ︸
unused partition

000000000000000︸ ︷︷ ︸
unused partition

000000000000000︸ ︷︷ ︸
unused partition

Although the interval list consists of two intervals, it is most certainly not possible to represent
these two intervals by two fill partitions. Firstly, the space in between the intervals needs to be rep-
resented by a 0-fill and secondly, a fill can not start at any arbitrary position within the bit vector,
but can only start at block boundaries. Worst case, a single interval needs to be represented by a
preceding 0-fill, a literal, a 1-fill and a literal. An example with three intervals can be illustrated
like this:

I = {(. . .) (i0, j0) (. . .) (i1, j1) (. . .) (i2, j2) }︸ ︷︷ ︸
0-fill

︸ ︷︷ ︸
lit.

︸︷︷︸
1-fill

︸︷︷︸
lit.

︸︷︷︸
0-fill

︸︷︷︸
lit.

︸︷︷︸
1-fill

︸︷︷︸
lit.

︸︷︷︸
0-fill

︸︷︷︸
lit.

︸︷︷︸
1-fill

︸︷︷︸
lit.︸ ︷︷ ︸

1st interval

︸ ︷︷ ︸
2nd interval

︸ ︷︷ ︸
3rd interval

In this worst case scenario, a single interval will require four PWAH partitions – assuming that
the length of both the 1-fill and the 0-fill do not require one or more extended fills (and span more
than one partition each). Table 3.2 on page 31 contains an overview of the different types of PWAH
and the amount of bits required to represent a single interval as described above.

A straightforward implementation of an interval list would use two 32-bit integers to store a
single interval. Looking at Table 3.2, it is immediately clear that PWAH-4, PWAH-2 and PWAH-1
will always require as least as much memory to store an interval as an interval list would use in
this worst case scenario. If the two fills can be stored using a single partition each, PWAH-8 would
use half as much memory as an interval list. Actually, PWAH-8 allows using up to six partitions
for representing the fill length of the 1-fill and 0-fill together, without using more memory than
equivalent interval lists would use.

Theorem 1. The number of partitions p required to store a fill consisting of n bits using a PWAH
compression scheme with block size b equals:

p =

⌈dlog2(n
b + 1)e

b− 1

⌉
(assuming n is a multiple of b)

Proof. The fill length is expressed in multiples of b, rather than in single bits. Therefore, the number
which needs to be encoded as the fill length equals n

b . The number of bits required to express that
length equals dlog2(n

b + 1)e. In a partition consisting of b bits, b− 1 bits are available for storing a
fill length.

29

3.3. PWAH CHAPTER 3. COMPRESSING REACHABILITY INFORMATION

Assuming an interval list uses 64 bits to store a single interval, it is possible to create a visual
representation of the interaction between PWAH-8 and interval lists memory usage. The two plots
depicted in Figure 3.3 on the next page illustrate this interaction:

Figure 3.3a – The number of bits within the 0-fill preceding the interval and the size of the 1-fill
representing the interval itself are depicted on the x and y axes, the z axis shows the number of
partitions used to store an interval. The green surface indicates the total amount of partitions
used by the PWAH-8 scheme to store an interval, which includes storing the preceding 0-fill
and both the two preceding and succeeding literal partitions. It is clear that the z value of the
green surface highly depends on the lengths of the 0-fill and 1-fill. The orange plane depicts
the amount of memory to store a single interval in an interval lists: a constant 64 bits (or,
as depicted on the z-axis: 8 partitions). The equation used to generate the green surface in
Figure 3.3a is:

f(x, y) =
log2(x

7 + 1)

6
+

log2(y
7 + 1)

6

Based on Theorem 1 on the preceding page.

Figure 3.3b – This figure depicts the dependency of the size of the 0-fill and the 1-fill, given the
fact that the number of partitions per interval is limited by eight in order to operate more
efficiently than an interval list. The graph is symmetrical (like Figure 3.3a), hence it does not
matter to which of the fills the x and y axes belong: the more bits one of the fills needs to
store, the less the other fill can contain without using more than eight partitions.

As can be concluded from both figures, only a combination of an extremely large preceding 0-fill
and an extremely large 1-fill will cause PWAH-8 to use more than eight partitions to represent a
single interval. Therefore, it is expected that PWAH-8 will perform better than interval lists in
terms of memory usage in virtually all cases. Whether this expectation is actually met or not when
using real-world graphs will be investigated in Chapter 4.

Worst case interval lists

The worst case situation for the PWAH scheme (compared to interval lists) has been shown in the
previous section. Obviously, it is also interesting to have a brief look at the opposite situation: the
worst case scenario for interval lists with respect to compressed bit vectors.

Although the PWAH scheme has great difficulty handling sequences containing ‘scattered’ bits,
it will still use only one bit for every plain bit. Interval lists on the other hand, will require 64
bits to represent a single 1-bit from a bit vector. For example, consider the following uncompressed
scattered bit vector Bu consisting of 16 bits, the equivalent PWAH-8 compressed bit vector Bc and
the equivalent interval list:

Bu= 01010101 01010101 · · ·
Bc = 000︸ ︷︷ ︸

header

0101010︸ ︷︷ ︸
literal

1010101︸ ︷︷ ︸
literal

0100000︸ ︷︷ ︸
literal

· · ·

I = {(1, 1), (3, 3), (5, 5), (7, 7), (9, 9), (11, 11), (13, 13), (15, 15)}

In this situation, an interval lists would require 8× 2× 32 bits = 512 bits to represent the same
information as the bit vectors contain. However, as explained in Section 2.2.5, it is very unlikely
that these worst case intervals would emerge from a graph when performing a DFS.

30

CHAPTER 3. COMPRESSING REACHABILITY INFORMATION 3.3. PWAH

64 bit word︷ ︸︸ ︷
PWAH-16: 1111111111111111︸ ︷︷ ︸

16 bits header

000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000︸ ︷︷ ︸
16 partitions of 3 bits

PWAH-8: 11111111︸ ︷︷ ︸
8 bits hdr

0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000︸ ︷︷ ︸
8 partitions of 7 bits

PWAH-4: 1111︸ ︷︷ ︸ 000000000000000 000000000000000 000000000000000 000000000000000︸ ︷︷ ︸
4 partitions of 15 bits

PWAH-2; 11︸︷︷︸ 0000000000000000000000000000000 0000000000000000000000000000000︸ ︷︷ ︸
2 partitions of 31 bits

PWAH-1: 1︸︷︷︸ 000︸ ︷︷ ︸
1 partition of 63 bits

Figure 3.2: All 5 PWAH schemes: 1, 2, 4, 8 and 16 partitions

BS # part. 0-fill and 1-fill Total # part. Bits

PWAH-8 7 1 + 1 = 2 4 4× 7 + 4 = 32
7 3 5 5× 7 + 5 = 40
7 4 6 6× 7 + 6 = 48
7 5 7 7× 7 + 7 = 56
7 6 8 8× 7 + 8 = 64

PWAH-4 15 1 + 1 = 2 4 4× 15 + 4 = 64
15 3 5 5× 15 + 5 = 80
15 4 6 6× 15 + 6 = 96

PWAH-2 31 1 + 1 = 2 4 4× 31 + 4 = 128
31 2 5 5× 31 + 5 = 160

PWAH-1 63 1 + 1 = 2 4 4× 63 + 4 = 256

Table 3.2: Overview of different PWAH schemes and the number of bits required to store an interval

(a) A 3D plot illustrating how interval lists and
PWAH-8 interact

(b) A plot illustrating the dependency of the 1-fill
and 0-fill in PWAH-8

Figure 3.3: Plots illustrating the relation between interval lists and PWAH-8

31

Chapter 4

Experimental evaluation

4.1 Set up of experiments

4.1.1 Introduction

Although run time complexity has been analysed in Chapters 2 and 3, an experimental analysis
using varying inputs might provide a better understanding of the actual behaviour of the algorithms
and data structures. In order to obtain such insight, both real-world and randomly generated graphs
were used to analyse the performance of the data structures.

In particular, the behaviour of the newly introduced PWAH data structures has been examined
very carefully. The structures were compared to both interval lists, Path-Tree (as described in
Section 2.3.2, [19]) and 3-Hop (Section 2.3.3, [18]).

4.1.2 Experiments of interest

This focus of this experimental evaluation is twofold:

1. determine which influence the input graphs have on the performance of the algorithms and
data structures;

2. determine the performance of PWAH compared to existing other approaches.

It is expected that the influence of the input graphs highly depends on the main characteristics of
the graph: the graph topology, the number of vertices and the number of edges. Since all approaches
highly depend on the structure of the condensation graph, the number of strongly connected com-
ponents and the number of edges between the components is expected to be of major importance
as well.

When evaluating ‘performance’, three aspects are considered to be of interest:

1. processing time: how long does it take to build a transitive closure data structure?

2. query time: how much time does it take to answer a reachability query using the data structure?

3. memory usage: how much memory does the finished data structure consume?

4.1.3 Random graphs

Introduction

To be able to determine the influence the input graphs have on performance, a large number of
randomly generated graphs have been used. The main properties (number of vertices and edges)
of the graphs can be determined beforehand, which provides the opportunity to have a very close
look at possible correlation between these graph properties and performance. Unfortunately, it is
very hard to generate graphs with a specific number of strongly connected components and inter-
component edges without losing the property of proper randomness. Very advanced techniques

33

4.1. SET UP OF EXPERIMENTS CHAPTER 4. EXPERIMENTAL EVALUATION

exist (as described in e.g. [22,23]) to generate graphs which are clustered to some extent, but these
methods lie far beyond the scope of this thesis.

Generating random graphs

The process of generating a random graph starts with determining the desired number of vertices
and inserting these vertices into the graph data structure. Adding edges is a more elusive process
and can be done in a number of ways:

1. Iterate over the set of all possible edges E = V ×V , select edges with a probability p and insert
the edges into edge set. This approach results in |E| scaling with |V |.

2. Determine the desired out-degree of a vertex and randomly pick neighbour vertices. Using
this approach, |E| does not scale with |V |. Note that it is possible to establish a probability
distribution which determines the out degree of a vertex. Such a distribution can have any
type, e.g. a uniform or normal distribution. Using this approach to selecting edges, a vertex
can have any arbitrary in-degree.

3. Determine both an in-degree and out-degree (by using any kind of probability distribution) for
each vertex and add incoming and outgoing edge stubs to each vertex. Randomly pick in-stubs
and out-stubs and connect these to form a new edge. At some point, there will be no in-stubs
or out-stubs left and the process terminates. Although this method does not guarantee an
exact in-degree or out-degree for vertices, it does provide a way to pose a limit to the degrees
of vertices, which will result a more uniform graph in terms of degrees.

4. Determine the number of vertices and edges, randomly pick pairs of vertices from V and
connect the pair using an edge, until the desired number of edges has been added.

As expressed before, showing a possible correlation between performance on one side and the
number of vertices and edges on the other is one of the two pillars of this experimental analysis.
Therefore, method 4 described above was used to generate a large data set of random graphs, since
it provides us with a way to influence the number of edges and vertices in a direct way.

Characteristics of generated graphs

The graph generation methods listed above are not designed to produce graphs which resemble or
model any specific type of real-world network. The number of strongly connected components is
obviously strongly correlated to the number of vertices and edges: a graph with a relatively large
number of edges will inevitably have a small number of components.

The plot depicted in Figure 4.1 on the next page shows the number of random graphs (Z axis)
obtained, with the number of strongly connected components and edges between the components on
the X and Y axes. The graph has been cropped in the direction of the Z axis in order to be able to
show the most relevant part. The number of graphs with ≤ 10, 000 strongly connected components
and ≤ 10, 000 edges between the components is close to 4,000.

4.1.4 Non-artificial graphs

To illustrate the variety of graph types for which bit vector compression provides a significant
advantage over existing data structures, a large number of graphs from different sources and fields
of research has been used as input for the experiments which were conducted. The graphs can be
divided into multiple groups:

� Source code analysis graphs provided by Semmle Ltd. This set consists of a large number of
graphs used for different kinds of source code analysis of multiple open source projects:

34

CHAPTER 4. EXPERIMENTAL EVALUATION 4.1. SET UP OF EXPERIMENTS

 0
 100000

 200000
 300000

 400000
 500000

 600000

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0

 1

 2

 3

 4

 5

Number of vertices in G’

Number of edges in G’

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

Figure 4.1: Correlation between the number of vertices and edges in the condensation graph G′ on
the X and Y axes and the number of generated graphs on the Z axis.

– ADempiere [2] (3.5.1a), an open source ERP application written in Java.
calls Describes direct calls between methods;
child Represents the parent-child relation in the abstract syntax tree;

depends Represents the dependency relation between types;
polycalls Describes direct calls between methods, taking the virtual dispatch

into account;
subtype Contains the subtype relationship of classes and interfaces;

successors Models the control-flow successor relation between statements.

– ImageMagick [8] (6.5.7-8), a collection of applications to display and edit raster images.
callgraph Describes direct calls between methods, using points-to analysis to

resolve virtual calls;
depends Describes the dependencies between source files;

successors Models the control-flow successor relation between expressions.

– Samba [36] (3.2.23), an open source server for the SMB/CIFS network protocols.
setflow Contains inclusion sets used to perform a points-to analysis.

� Wikipedia structural graphs provided by Semmle Limited (based on the simple English Wikipedia
as of the 1st of July, 2009).

categorylinks Links between category pages;
categorypagelinks Links from category pages to any other page (category or regular);

pagelinks Links between pages in Wikipedia.

� Graphs used by Jin et al. in [19]:

35

4.2. INFLUENCE OF INPUT GRAPHS ON PWAH PERFORMANCE CHAPTER 4. EXPERIMENTAL EVALUATION

AgroCyc, Anthra,
Ecoo, HpyCyc,

Human, Mtbra and
VchoCyc

Graphs originating from the EcoCyc project [10], a scientific database
for the bacterium Escherichia Coli K-12 MG1655;

Xmark and Nasa XML documents (not credited in [19]);

Reactome, aMaze
and KEGG

Metabolic networks provided by Trißl et al. [37].

� Graphs used by Jin et al. in [19]:
ArXiv Subset of data set of citations within research papers, as found on the

ArXiv website [38];
CiteSeer Citations from database of CiteSeer project website [15];
pubmed Citations in publications from the medical research field, as found on

the PubMed website [39];
GO Data set of genetic terms from the Gene Ontology project [35];

YAGO Relationships within the semantic knowledge database from the YAGO
project [33].

� Road graph:
benelux A road network graph of Belgium, The Netherlands and Luxembourg.

Characteristics of these graphs are listed in Table 4.1 on the facing page.

4.1.5 Environment and tools

Machine

All experiments were carried out on a 64 bit Intel® Core�2 Quad CPU type Q6700 with four cores
at 2.66GHz. A total of four gigabytes of memory was installed.

Operating system

The experiment machine was running Ubuntu 10.04 LTS with Linux kernel 2.6.32. The operating
system was stripped of any graphical interface and only core services were still running in order to
be able to obtain reliable timings.

Tools

The GNU C++ compiler (version 4.4.3) was used to compile C++ code. Version 4.4.0 of the gnuplot
tool was used to visualise the obtained data in the plots presented in this experimental evaluation.

4.2 Influence of input graphs on PWAH performance

4.2.1 Construction time: a short preface

The Nuutila/PWAH approach to transitive closure computation has two main computational tasks:
1. Graph traversal and detection of strongly connected components. The number of edges and

vertices will most likely have a significant influence on the time spent on this task;

2. Merging reachability information of strongly connected components. The number of strongly
connected components and the number of edges between the components will most likely have
a significant influence on the time spent on this task.

Due to the fact both tasks are performed in one graph traversal, it is very hard to analyse the
time spent on either of the two tasks in isolation.

36

CHAPTER 4. EXPERIMENTAL EVALUATION 4.2. INFLUENCE OF INPUT GRAPHS ON PWAH PERFORMANCE

|V | |E| |VC | = |C| |EC | |E+| |E∗|
ADempiere [2]
Calls 52,290 198,041 52,225 8,726,099 8,972,548 9,024,678
Child 181,091 180,373 181,091 568,468 568,468 749,559
Depends 6,332 79,804 4,679 2,205,417 7,756,079 7,758,212
Polycalls 53,206 595,198 44,839 159,722,084 438,508,149 438,552,734
Subtype 10,391 32,588 10,391 92,252 92,252 102,643
Successors 423,358 448,909 384,094 4,014,609 7,323,367 7,703,798

ImageMagick [8]
Callgraph 3,685 22,282 3,340 867,109 1,787,728 1,791,047
Depends 524 11,408 278 13,441 128,143 128,240
Successors 1,095,062 1,145,304 542,235 120,800,042 2,309,714,078 2,310,250,306

Samba [36]
Setflow 568,656 884,839 510,720 3,134,420,405 10,968,067,063 10,968,568,966

Wikipedia
Categorylinks 11,808 18,630 11,798 230,116 234,507 246,288
Cat. pagelinks 75,946 181,084 75,936 2,209,952 2,262,118 2,338,037
Pagelinks 137,830 2,949,220 47,242 104,513,953 12,479,685,213 12,479,732,188

Jin et al. [19] 2008
AgroCyc 13,969 17,694 12,684 170,591 2,731,596 2,744,279
Amaze 11,877 28,700 3,710 2,371,476 93,685,094 93,688,747
Anthra 13,736 17,307 12,499 148,559 2,440,124 2,452,621
Ecoo 13,800 17,308 12,620 173,254 2,398,250 2,410,868
HpyCyc 5,565 8,474 4,771 77,131 1,113,356 1,118,124
Human 40,051 43,879 38,811 348,112 2,804,552 2,843,362
Kegg 14,271 35,170 3,617 2,637,440 147,922,066 147,925,460
Mtbrv 10,697 13,922 9,602 139,275 2,038,237 2,047,836
Nasa 5,704 7,939 5,605 167,243 186,900 191,250
Reactome 3,678 14,447 901 32,607 6,666,940 6,667,788
VchoCyc 10,694 14,207 9,491 136,674 2,343,636 2,353,125
Xmark 6,483 7,954 6,080 536,389 2,307,574 2,313,653

Jin et al. [18] 2009
ArXiv 6,000 66,707 6,000 5,566,205 5,566,205 5,572,205
CiteSeer 10,720 44,258 10,720 421,995 421,995 421,995
GO 6,793 13,361 6,793 104,178 104,178 104,178
PubMed 9,000 40,028 9,000 523,037 523,037 523,037
YAGO 6,642 42,392 6,642 66,439 66,439 66,439

Road network
Benelux 1,598,250 3,756,335 406 39,295 2,553,615,187,901 2,553,615,188,285

Column definitions:

|V | = Number of vertices;

|E| = Number of edges;

|VC | = |C| = Number of strongly connected components (vertices in the condensed graph);

|EC | = Number of edges between strongly connected components (edges in the condensed graph);

|E+| = Number of edges in the regular transitive closure;

|E∗| = Number of edges in the reflexive transitive closure.

Table 4.1: Characteristics of non-artificial graphs used for experiments

37

4.2. INFLUENCE OF INPUT GRAPHS ON PWAH PERFORMANCE CHAPTER 4. EXPERIMENTAL EVALUATION

4.2.2 Construction time: vertices and edges

Figure 4.2 contains three plots depicting the construction time of a transitive closure data structure
with respect to the number of vertices and edges of a directed graph G. Several observations can be
made and questions can be raised based on these figures.

First, the limited range of the plot lines sticks out. During the graph generation process, graphs
containing less than ten strongly connected components (or 50, for |V | > 100, 000) are considered to
be not of any interest and are therefore not stored. The number of strongly connected components
highly depends on the number of edges: an increasing number of edges yields a strongly decreasing
number of strongly connected components and therefore, the plot lines abruptly end.

The next remarkable characteristic is the maximum located between |E| = 20, 000 and |E| =
700, 000, depending on the number of vertices. This phenomenon is caused by the fact that the
total amount of time spent on merging reachability information highly depends on the number of
strongly connected components in the input graph. Graphs with a small number of edges (relative to
the number of vertices), are expected to contain a number of strongly connected components which
roughly equals the number of vertices, i.e. most components consist of only one vertex. Since the
operation of merging reachability information is (1) carried out exactly once for every component
and (2) depends on the number of reachable strongly connected components, the processing time
will initially increase drastically when adding edges.

After reaching a critical edge density, randomly adding more edges will result in creating strongly
connected components consisting of more than just one vertex. As the number of edges increases, the
number of components drops drastically and the number of required merge operations will decrease.
This effect can clearly be seen in the plot figures, as the plot lines drop to a local minimum somewhere
between |E| = 60, 000 and |E| = 1, 500, 000 (again, depending on the number of vertices).

At the local minimum, the number of strongly connected components is still decreasing, but only
very slowly. Henceforth, the time gained by having to perform less merge operations does no longer
dominate the costs of (1) graph traversal and (2) storing more and more reachability information
induced by the increasing amount of edges. After a while, the number of components falls below
the threshold and the plot lines end.

The observation regarding the maxima in the plots illustrates the influence of both of the main
computational tasks on the total processing time. By carefully looking at the third plot (Figure
4.2c) and comparing it to the first one (Figure 4.2a), the explanation of this observation can be
validated: although different compression schemes were used to generate the plots and therefore the
maxima are located at significantly different locations, all plot lines end at roughly the same values
of construction time (for example, 700 milliseconds for |V | = 500, 000 and |E| = 6, 000, 000).

This confirms that the time spent on merging reachability information (which is obviously sig-
nificantly influenced by the choice of compression scheme or data structure) highly depends on the
number of strongly connected components. Once the number of components has shrunk sufficiently,
the time spent on merging reachability information no longer dominates the time used by the DFS
process to traverse the graph.

Note that the last observation at the same time explains the apparently linear correlation between
the number of edges and the processing time (for larger values of |E|): at some point, the linear
DFS procedure dominates the time spent on computing reachability information.

4.2.3 Construction time: vertices and edges in condensation graph

The plots in Figure 4.2 suggests a correlation between the number of components and the construc-
tion time of the transitive closure data structure. Figure 4.3 on page 40 is based on three similar
generated graphs and depicts two correlations within each of the three plots:

1. the construction time with respect to the number of strongly connected components in the
input graph, and

38

CHAPTER 4. EXPERIMENTAL EVALUATION 4.2. INFLUENCE OF INPUT GRAPHS ON PWAH PERFORMANCE

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1e+06 2e+06 3e+06 4e+06 5e+06

C
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
m

ill
is

e
c
o

n
d

s
)

Number of edges in G

|V|=10,000
|V|=20,000
|V|=30,000
|V|=40,000
|V|=50,000

|V|=100,000
|V|=200,000
|V|=300,000
|V|=400,000
|V|=500,000

(a) Construction time of TC data structure using PWAH-2 w.r.t. number of vertices and edges

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100000 200000 300000 400000 500000

C
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
m

ill
is

e
c
o

n
d

s
)

Number of edges in G

|V|=10,000
|V|=20,000
|V|=30,000
|V|=40,000
|V|=50,000

|V|=100,000
|V|=200,000
|V|=300,000
|V|=400,000
|V|=500,000

(b) Construction time of TC data structure using PWAH-2 w.r.t. number of vertices and edges, detail of
plot shown above

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1e+06 2e+06 3e+06 4e+06 5e+06

C
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
m

ill
is

e
c
o

n
d

s
)

Number of edges in G

|V|=10,000
|V|=20,000
|V|=30,000
|V|=40,000
|V|=50,000

|V|=100,000
|V|=200,000
|V|=300,000
|V|=400,000
|V|=500,000

(c) Construction time of TC data structure using PWAH-8 w.r.t. number of vertices and edges

Figure 4.2: Plots of construction time (Y axes) using PWAH-2 and PWAH-8 with respect to the
number of edges in a graph (X axes).

39

4.2. INFLUENCE OF INPUT GRAPHS ON PWAH PERFORMANCE CHAPTER 4. EXPERIMENTAL EVALUATION

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20000 40000 60000 80000 100000
 10000

 100000

 1e+06

 1e+07

C
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
in

 m
ill

is
e

c
o

n
d

s
)

N
u

m
b

e
r

o
f

e
d

g
e

s

Number of strongly connected components

Construction time
Number of edges

(a) |V | = 100, 000

 0

 100

 200

 300

 400

 500

 600

 700

 0 50000 100000 150000 200000 250000
 10000

 100000

 1e+06

 1e+07

C
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
in

 m
ill

is
e

c
o

n
d

s
)

N
u

m
b

e
r

o
f

e
d

g
e

s

Number of strongly connected components

Construction time
Number of edges

(b) |V | = 250, 000

 0

 200

 400

 600

 800

 1000

 1200

 0 100000 200000 300000 400000 500000
 10000

 100000

 1e+06

 1e+07

C
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
in

 m
ill

is
e

c
o

n
d

s
)

N
u

m
b

e
r

o
f

e
d

g
e

s

Number of strongly connected components

Construction time
Number of edges

(c) |V | = 500, 000

Figure 4.3: Plots of construction time (using PWAH-2, depicted using red points: +) and the
number of edges (blue points: ×), based on randomly generated graphs with fixed vertex counts
and up to 5,000,000 edges.

40

CHAPTER 4. EXPERIMENTAL EVALUATION 4.3. COMPARING DIFFERENT PWAH SCHEMES

2. the number of edges required to yield a specific number of strongly connected components.

The construction time of the transitive closure data structure indeed turns out to be strongly
correlated to the number of strongly connected components (denoted by |C|) in the input graph.
For very small and very large values of |C|, the construction time appears to be very unpredictable:
between 180 and 50 milliseconds for a small number of components, between 30 and 170 milliseconds
for graphs containing a large number of components.

This phenomenon can again very easily be explained by the relation between the number of edges
and vertices and the number of strongly connected components. Note that the number of vertices is
fixed within each graph: 100,000 vertices in Figure 4.3a, 250,000 in Figure 4.3b and 500,000 vertices
in Figure 4.3c. For randomly generated graphs containing |V | = 100, 000 vertices, the number of
strongly connected components roughly equals 1 when |E| ≥ 1, 300, 000. On the other end, the
number of components equals 100,000 when |E| ≤ 80, 000. Since the number of edges was increased
linearly when generating the graphs, a large number of data points lie on the far left and far right
side of the plot.

As indicated, the number of edges in these graphs (depicted on the logarithmically scaled sec-
ondary Y axes by using the red points: +) determines the number of resulting strongly connected
components. The two data series are displayed on the two Y axes within the same plots to show the
remarkable resemblance between them for smaller values of |C|.

4.2.4 Query time

To measure the effect of the size of the input graph (in terms of numbers of edges and vertices) on the
query time of the PWAH data structure, one million source and destination vertices were randomly
selected. The total time to answer one million reachability queries on a graph with 500,000 vertices
was measured and is depicted in Figure 4.4 on the following page.

As has been explained earlier: a large amount of data points is located at both ends of the X axis.
As a very large and diverse range of graphs is responsible for these data points, it is impossible to
draw conclusions based on these values. The general shape of the plot indicates a linear correlation
between the number of components of a graph and the time it takes to answer 1,000,000 random
queries on the associated transitive closure data structures. This correlation was to be expected: the
length of the reachability bit vectors will grow roughly linearly with the number of strongly connected
components. Since a single reachability query requires a linear scan over a PWAH compressed bit
vector, the time to answer such a reachability query is expected to grow linearly with the length of
the bit vector.

4.2.5 Memory usage

The plots in Figure 4.5 on page 43 show the number of bits used by PWAH-2 with respect to the
number of strongly connected components in the input graph. Note that the number of vertices in
the input graph is fixed to 500,000, the number of edges varies from 10,000 to 5,000,000. Once again,
the data points to the far left and right are based on a very large number of graphs with varying
properties. Hence, it is impossible to draw conclusions based on these points.

The general shape of the first plot hints towards a very subtle quadratic (actually close to linear)
correlation between the number of bits required to store the transitive closure representation and
the number of components. The second plot contains the same data points, but has been drastically
rescaled to fit the number of bits an equivalent reachability matrix would use to store the same
reachability information.

4.3 Comparing different PWAH schemes

The performance of the different PWAH compression schemes is compared in Figure 4.6 on page 44
by plotting the construction time, query time and memory usage of the three schemes. The rela-
tive performance of the three different compression schemes does not show any unexpected results:

41

4.4. INDEXING PWAH CHAPTER 4. EXPERIMENTAL EVALUATION

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100000 200000 300000 400000 500000

T
o

ta
l
q

u
e

ry
 t

im
e

 (
in

 m
ill

is
e

c
o

n
d

s
 f

o
r

1
,0

0
0

,0
0

0
 q

u
e

ri
e

s
)

Number of strongly connected components

Figure 4.4: Total time required to answer 1,000,000 queries with respect to the number of strongly
connected components in random graphs with 500,000 vertices and up to 5,000,000 edges using
PWAH-2

PWAH-8 implements a more fine grained compression and is therefore uses less memory but is
slightly slower than PWAH-2 and PWAH-4.

Figure 4.6a does show a remarkable local maximum at |C| = 350, 000, which can most clearly
be seen in the PWAH-8 data points (depicted in orange: S). For a number of strongly connected
components larger than 350,000, the total construction time actually starts decreasing. This effect
can be explained by the way the random graphs were generated: a large number of strongly connected
components in a graph with 500,000 vertices indicates the graph contains a relatively small number
of edges. Less edges imply less reachability, resulting in PWAH bit vectors consisting of mostly
0-fills. As explained in Section 3.2, PWAH bit vectors consisting of large fills can be processed in a
very efficient way. Therefore, although the number of strongly connected components is increasing,
the total time spent on merging reachability information is actually decreasing.

4.4 Indexing PWAH

As explained in Section 3.3, the main disadvantage of PWAH over a regular (uncompressed) bit
vectors is the fact that performing a lookup operation requires linear time. In order to reduce
the asymptotic time required for such an operation, an index on the PWAH bit vector was intro-
duced. Figure 4.7 on page 46 shows three plots illustrating the effect of applying such indices to the
performance of PWAH-8 on a graph with 500,000 vertices and up to 5,000,000 edges.

The figure depicts the results of multiple index chunk sizes (as introduced in Section 3.3.6),
denoted by i. For example, i = 1024 means the location of every 1024th bit in the bit vector is
explicitly stored in the index. A larger chunk size results in a less locations being stored in the index
and therefore a smaller index size.

The results of the experiments with indices are rather surprising. One would expect to see two
trends:

1. indexing the bit vector yields a constant query time;

2. a more fine grained index will yield a better query performance.

Looking at the results of the experiments, both expectations are defied. It is very hard – if not
impossible – to determine exactly why indexing the PWAH vectors turns out to work counterpro-
ductively, but the most likely cause is to be found within caching behaviour. Whilst using computer
memory, the operating system will precache the memory which is most likely to be read in the very

42

CHAPTER 4. EXPERIMENTAL EVALUATION 4.4. INDEXING PWAH

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 0 100000 200000 300000 400000 500000

N
u

m
b

e
r

o
f

b
it
s
 u

s
e

d
 b

y
 P

W
A

H
-2

 t
o

 s
to

re
 T

C
 d

a
ta

 s
tr

u
c
tu

re

Number of strongly connected components

PWAH-2
reachability matrix

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 0 100000 200000 300000 400000 500000

N
u

m
b

e
r

o
f

b
it
s
 u

s
e

d
 b

y
 P

W
A

H
-2

 t
o

 s
to

re
 T

C
 d

a
ta

 s
tr

u
c
tu

re

Number of strongly connected components

PWAH-2
reachability matrix

Figure 4.5: Total amount of bits required to store the transitive closure data structure (using PWAH-
2 compression) with respect to the number of strongly connected components in random graphs with
500,000 vertices and up to 5,000,000 edges. The estimated number of bits an equivalent reachability
matrix would use is illustrated by the continuous blue plot line. Note that both plots contain the
same data points but the Y axes are scaled differently.

43

4.4. INDEXING PWAH CHAPTER 4. EXPERIMENTAL EVALUATION

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100000 200000 300000 400000 500000

C
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
in

 m
ill

is
e

c
o

n
d

s
)

Number of strongly connected components

PWAH-2
PWAH-4
PWAH-8

(a)

 0

 100

 200

 300

 400

 500

 0 100000 200000 300000 400000 500000

T
o

ta
l
q

u
e

ry
 t

im
e

 (
in

 m
ill

is
e

c
o

n
d

s
 f

o
r

1
,0

0
0

,0
0

0
 q

u
e

ri
e

s
)

Number of strongly connected components

PWAH-2
PWAH-4
PWAH-8

(b)

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 0 100000 200000 300000 400000 500000

N
u

m
b

e
r

o
f

b
it
s
 u

s
e

d
 t

o
 s

to
re

 T
C

 d
a

ta
 s

tr
u

c
tu

re

Number of strongly connected components

PWAH-2
PWAH-4
PWAH-8

(c)

Figure 4.6: Comparison of PWAH schemes based on (a) construction time, (b) query time and (c)
memory usage

44

CHAPTER 4. EXPERIMENTAL EVALUATION 4.5. PWAH VS. INTERVAL LISTS, PATH-TREE AND 3-HOP

near future. When performing a linear scan through the words of a PWAH compressed bit vector,
this caching strategy turns out to perform remarkably well. However, when introducing an index
(which actually consists of three separate integer arrays) on the PWAH vector, multiple random
memory locations have to be read and processed. This effectively renders the operating system’s
approach to caching useless, deteriorating the lookup performance of the bit vector. Note that the
more fine grained indices turn out to be more sensitive to the failing cache, since these take up a
significantly larger amount of memory (Figure 4.7c).

4.5 PWAH vs. interval lists, Path-Tree and 3-Hop

4.5.1 Introduction

The correlation between input sizes of random graphs and PWAH performance has been evaluated,
but in real life one does scarcely encounter graphs of which the topology resembles that of a random
graph. Therefore, the performance of PWAH is evaluated on real life graphs as well, by comparing
its performance to that of three other approaches:

1. Nuutila’s algorithm with interval lists;

2. Path-Tree [19]: both PTree-1 (optimal path-decomposition by min-cost flow) and PTree-2
(suboptimal path-decomposition);

3. 3-Hop: the 3-Hop Contour approach as described by Jin et al. in [18].

For this purpose, a large data set of graphs has been composed, of which the characteristics are
listed in Table 4.1 on page 37. These graphs have been split up into three categories which are
grouped into single bar charts:

� Graphs from [18,19], as presented on SIGMOD 2008 and 2009;

� Graphs used for static program analysis;

� Graphs describing the structure of Wikipedia and a road network graph1.

Unfortunately, it turned out that 3-Hop was not capable of processing most of the input graphs
from our data set. Therefore, the comparison of PWAH, interval lists and 3-Hop has been performed
based on the graphs used by Jin et al. in [18]. The results are presented in Section 4.5.5 on page 47.

Note that some charts are lacking bars from the PTree-1 and PTree-2 algorithms. This is due to
either a experiment timeout (5 runs within 3 minutes) or due to a segmentation fault which occurred
whilst processing the graphs.

Another important thing to note is the scale of the Y axes of the plots in this section: all Y
axes are logarithmically scaled. Although small differences in timing or memory usage might look
bigger, it turned out to be the only way to illustrate the performance of the different approaches to
transitive closure computation in a single bar chart.

In general, each input graph has been processed five times by each algorithm after which both
the construction times and query times were averaged. Since all algorithms are deterministic, the
memory usage does not vary over different runs.

4.5.2 Construction time

Figure 4.8 on page 48 provides a comparison of construction times (in milliseconds). The difference
between the performance of Nuutila’s approach (using PWAH bit vectors or interval lists as backend)
and the performance of the PathTree algorithms is astounding: around two orders of magnitude. In
most cases, interval lists turn out to perform slightly better than the PWAH compressed bit vectors,
although the timings are extremely close.

Note that in nine cases, the PathTree implementations were not capable of processing the input
graph. Most of the times due to a timeout, caused by heavy memory swapping, sometimes by an

1The road network graph is strictly proprietary and was provided by an anonymous third party

45

4.5. PWAH VS. INTERVAL LISTS, PATH-TREE AND 3-HOP CHAPTER 4. EXPERIMENTAL EVALUATION

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100000 200000 300000 400000 500000

C
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
in

 m
ill

is
e

c
o

n
d

s
)

Number of strongly connected components

PWAH-8, without index
PWAH-8, i=1024
PWAH-8, i=2048
PWAH-8, i=4096

(a)

 0

 100

 200

 300

 400

 500

 0 100000 200000 300000 400000 500000

T
o

ta
l
q

u
e

ry
 t

im
e

 (
in

 m
ill

is
e

c
o

n
d

s
 f

o
r

1
,0

0
0

,0
0

0
 q

u
e

ri
e

s
)

Number of strongly connected components

PWAH-8, without index
PWAH-8, i=1024
PWAH-8, i=2048
PWAH-8, i=4096

(b)

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 0 100000 200000 300000 400000 500000

N
u

m
b

e
r

o
f

b
it
s
 u

s
e

d
 t

o
 s

to
re

 T
C

 d
a

ta
 s

tr
u

c
tu

re

Number of strongly connected components

PWAH-8, without index
PWAH-8, i=1024
PWAH-8, i=2048
PWAH-8, i=4096

(c)

Figure 4.7: Plots showing the impact of indexing on construction time, query time and memory
usage of PWAH-8

46

CHAPTER 4. EXPERIMENTAL EVALUATION 4.5. PWAH VS. INTERVAL LISTS, PATH-TREE AND 3-HOP

unexplainable segmentation fault. Three graphs which are listed in Table 4.1 on page 37 are not
depicted in Figure 4.8 since the graphs turned out to bee too small to yield timings significant
enough for comparison.

4.5.3 Query time

The time required to perform 1,000,000 random queries on the transitive closure data structures is
depicted in Figure 4.9 on page 49. Once more, note the logarithmically scaled Y axes of the plots.

As was the case with comparing construction time, interval lists perform remarkably well. In
general, differences in query time are not very large. In spite of their significantly longer construction
time, the PTree algorithms do generally not outperform the PWAH and interval approaches in terms
of query time.

4.5.4 Memory usage

Figure 4.10 on page 50 contains three plots depicting the memory usage of the transitive closure data
structures produced by the different algorithms. These experimental results confirm the theory pre-
sented in Section 3.3.7: PWAH-8 will virtually always outperform interval lists in terms of memory
usage. In fact, PWAH-8 outperforms PathTree as well, despite its significantly longer construction
time.

4.5.5 PWAH, Interval lists and 3HOP

The five graphs used by Jin et al. in [18] were used to compare 3-Hop to interval lists and PWAH-8.
The results are depicted in Figure 4.11 on page 51. As listed in Table 4.1 on page 37, the graphs
are acyclic and significantly more dense than most other graphs.

The results shed some light on the reason for the authors of [18] not to include an experimental
analysis of the construction time. For one of the graphs, it took the 3-Hop algorithm over 15 minutes
to construct the transitive closure data structure. The construction time of the transitive closure of
the other graphs varies from ten seconds to 1.5 minutes. The data structure based on interval lists
can be constructed a few milliseconds to 50 milliseconds faster than the PWAH-8 structures. The
difference with 3-Hop is more significant: up to four orders of magnitude.

When looking at the query time, interval lists perform remarkably well: up to one order of
magnitude better than PWAH-8, up to two orders of magnitude better than 3-Hop. This is most
probably caused by the fact that query time on a PWAH-8 bit vector is linear in the length of the
vector, whilst an interval list can be queried within logarithmic time. As listed in Table 4.1 on
page 37, the graphs are considerably dense though acyclic and do therefore not contain any strongly
connected components of size > 1. Hence, the bit vectors and interval lists will grow quite large,
resulting in a more significant difference in query time performance.

However, when looking at the memory usage, interval lists perform rather dreadful. PWAH-8 is
performing best of all three approaches for four out of five graphs, up to little less than one order
of magnitude better than 3-Hop and interval lists. As was the case with Path-Tree, in spite of a
significantly longer construction time, 3-Hop does generally not outperform PWAH and interval lists
in terms of both query time and memory usage.

47

4.5. PWAH VS. INTERVAL LISTS, PATH-TREE AND 3-HOP CHAPTER 4. EXPERIMENTAL EVALUATION

 0.1

 1

 10

 100

 1000

sigm
od08/agrocyc

sigm
od08/am

aze

sigm
od08/anthra

sigm
od08/ecoo

sigm
od08/hpycyc

sigm
od08/hum

an

sigm
od08/kegg

sigm
od08/m

tbrv

sigm
od08/nasa

sigm
od08/reactom

e

sigm
od08/vchocyc

sigm
od08/xm

ark

C
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
m

ill
is

e
c
o

n
d

s
)

PWAH-2
PWAH-4
PWAH-8

Interval lists
PTree-1
PTree-2

(a) Construction time of TC of graphs from [19]

 10

 100

 1000

 10000

adem
piere/calls

adem
piere/child

adem
piere/depends

adem
piere/polycalls

adem
piere/successors

im
/successor

sam
ba/setflow

C
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
m

ill
is

e
c
o

n
d

s
)

PWAH-2
PWAH-4
PWAH-8

Interval lists
PTree-1
PTree-2

(b) Construction time of TC of graphs

 1

 10

 100

 1000

 10000

benelux

w
iki/categorypagelinks

w
iki/categorylinks

w
iki/pagelinks

C
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
m

ill
is

e
c
o

n
d

s
)

PWAH-2
PWAH-4
PWAH-8

Interval lists
PTree-1
PTree-2

(c) Construction time of TC of graphs

Figure 4.8: Comparison of construction time using multiple real-world graphs

48

CHAPTER 4. EXPERIMENTAL EVALUATION 4.5. PWAH VS. INTERVAL LISTS, PATH-TREE AND 3-HOP

 10

 100

sigm
od08/agrocyc

sigm
od08/am

aze

sigm
od08/anthra

sigm
od08/ecoo

sigm
od08/hpycyc

sigm
od08/hum

an

sigm
od08/kegg

sigm
od08/m

tbrv

sigm
od08/nasa

sigm
od08/reactom

e

sigm
od08/vchocyc

sigm
od08/xm

ark

T
o

ta
l
q

u
e

ry
 t

im
e

 (
in

 m
ill

is
e

c
o

n
d

s
 f

o
r

1
,0

0
0

,0
0

0
 q

u
e

ri
e

s
)

PWAH-2
PWAH-4
PWAH-8

Interval lists
PTree-1
PTree-2

(a) Query time on TC of graphs from [19]

 10

 100

 1000

 10000

im
/callgraph

im
/depends

im
/successor

adem
piere/calls

adem
piere/child

adem
piere/depends

adem
piere/polycalls

adem
piere/subtype

adem
piere/successors

sam
ba/setflow

T
o

ta
l
q

u
e

ry
 t

im
e

 (
in

 m
ill

is
e

c
o

n
d

s
 f

o
r

1
,0

0
0

,0
0

0
 q

u
e

ri
e

s
) PWAH-2

PWAH-4
PWAH-8

Interval lists
PTree-1
PTree-2

(b) Query time on TC of graphs

 0.1

 1

 10

 100

 1000

benelux

w
iki/categorypagelinks

w
iki/categorylinks

w
iki/pagelinks

T
o

ta
l
q

u
e

ry
 t

im
e

 (
in

 m
ill

is
e

c
o

n
d

s
 f

o
r

1
,0

0
0

,0
0

0
 q

u
e

ri
e

s
) PWAH-2

PWAH-4
PWAH-8

Interval lists
PTree-1
PTree-2

(c) Query time on TC of graphs

Figure 4.9: Comparison of memory usage using multiple real-world graphs

49

4.5. PWAH VS. INTERVAL LISTS, PATH-TREE AND 3-HOP CHAPTER 4. EXPERIMENTAL EVALUATION

 10000

 100000

 1e+06

sigm
od08/agrocyc

sigm
od08/am

aze

sigm
od08/anthra

sigm
od08/ecoo

sigm
od08/hpycyc

sigm
od08/hum

an

sigm
od08/kegg

sigm
od08/m

tbrv

sigm
od08/nasa

sigm
od08/reactom

e

sigm
od08/vchocyc

sigm
od08/xm

ark

N
u

m
b

e
r

o
f

b
it
s
 u

s
e

d
 t

o
 s

to
re

 T
C

 d
a

ta
 s

tr
u

c
tu

re

PWAH-2
PWAH-4
PWAH-8

Interval lists
PTree-1
PTree-2

(a) Memory usage of TC of graphs from [19]

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

adem
piere/calls

adem
piere/child

adem
piere/depends

adem
piere/polycalls

adem
piere/subtype

adem
piere/successors

im
/callgraph

im
/depends

im
/successor

sam
ba/setflow

N
u

m
b

e
r

o
f

b
it
s
 u

s
e

d
 t

o
 s

to
re

 T
C

 d
a

ta
 s

tr
u

c
tu

re

PWAH-2
PWAH-4
PWAH-8

Interval lists
PTree-1
PTree-2

(b) Memory usage of TC of graphs

 10000

 100000

 1e+06

 1e+07

w
iki/categorylinks

w
iki/categorypagelinks

w
iki/pagelinks

benelux

N
u

m
b

e
r

o
f

b
it
s
 u

s
e

d
 t

o
 s

to
re

 T
C

 d
a

ta
 s

tr
u

c
tu

re

PWAH-2
PWAH-4
PWAH-8

Interval lists
PTree-1
PTree-2

(c) Memory usage of TC of graphs

Figure 4.10: Comparison of memory usage using multiple real-world graphs

50

CHAPTER 4. EXPERIMENTAL EVALUATION 4.5. PWAH VS. INTERVAL LISTS, PATH-TREE AND 3-HOP

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

sigm
od09/arxiv

sigm
od09/citeseer

sigm
od09/go

sigm
od09/pubm

ed

sigm
od09/yago

C
o

n
s
tr

u
c
ti
o

n
 t

im
e

 (
m

ill
is

e
c
o

n
d

s
)

PWAH-8
Interval lists

3HOP-Contour

(a) Comparison of construction time

 10

 100

 1000

sigm
od09/arxiv

sigm
od09/citeseer

sigm
od09/go

sigm
od09/pubm

ed

sigm
od09/yago

T
o

ta
l
q

u
e

ry
 t

im
e

 (
in

 m
ill

is
e

c
o

n
d

s
 f

o
r

1
,0

0
0

,0
0

0
 q

u
e

ri
e

s
)

PWAH-8
Interval lists

3HOP-Contour

(b) Comparison of query time

 1e+06

 1e+07

sigm
od09/arxiv

sigm
od09/citeseer

sigm
od09/go

sigm
od09/pubm

ed

sigm
od09/yago

N
u

m
b

e
r

o
f

b
it
s
 u

s
e

d
 t

o
 s

to
re

 T
C

 d
a

ta
 s

tr
u

c
tu

re

PWAH-8
Interval lists

3HOP-Contour

(c) Comparison of memory usage

Figure 4.11: Performance comparison of PWAH-8, interval lists and 3-Hop using graphs from [18]

51

Chapter 5

Conclusion

5.1 Experimental evaluation

5.1.1 PWAH

Although it was shown that there exists a strong correlation between the number of vertices and
the number of edges on one side and the performance of different compression schemes on the other,
it is clear that the graph topology has a very significant (maybe even stronger) influence. All of
the approaches especially depend on the number of strongly connected components and edges in
between them.

Quite surprisingly, indexing PWAH does not yield a performance improvement in terms of query
time. It rather results in a deterioration of performance, most likely caused by cache misses.

As expected, the PWAH schemes turn out to be a very competitive opponent to interval lists,
PathTree and 3-Hop on all performance tests. Especially with respect to memory usage, PWAH-8
turns out to be highly effective for compressing reachability information, whilst maintaining impres-
sive construction and query times.

5.1.2 Interval lists

As suggested by Nuutila in [24], interval lists are a very interesting option to store reachability
information. The lists perform quite impressive in terms of construction time, query time and
memory usage. However, PWAH-8 will perform better than interval lists in terms of memory usage
in virtually all cases, slightly at expense of construction time and query time performance.

5.1.3 Path-Tree and 3-Hop

Both the Path-Tree [19] and 3-Hop [18] approaches are supported by a very sound theoretical
foundation, but turn out to be both slower and use more memory than PWAH and interval lists on
virtually all graphs. Although [19] is titled “Efficiently answering reachability queries on very large
directed graphs”, the implementation turns out to be incapable of processing most large graphs in our
data set. Furthermore, the O(1) query time mentioned in [19] is quite misleading. The theory of the
3-Hop algorithm sounds very interesting, but unfortunately the construction time of the transitive
closure renders this approach practically unusable.

5.2 Further research

As is fairly common when conducting a research project, there are some aspects which have not
yet been thoroughly investigated, but which might nevertheless be interesting to look at. A few
suggestions are listed below.

53

5.2. FURTHER RESEARCH CHAPTER 5. CONCLUSION

Multiple queries: sort and iterate

As mentioned in Chapter 3, the largest downside to using compressed bit vectors is the increased
query time. In contrast to regular bit vectors, compressed bit vectors do not store information at
a fixed offset, hence a full scan over the vector might be required to determine the value of the
requested bit.

However, when a sequence of queries is to be answered by the compressed bit vector, it might be
beneficial to sort the queries first (in order of increasing bit index) and use an iterator to determine
the values of the queried bits. This approach would require only one scan over the bit vector, yielding
an expected run time of O(k log2(k) + n) (for k queries on a bit vector of size n, assuming sorting
can be done in O(k log2(k)) time.

Optimised interval lists

Throughout this thesis, interval lists were assumed to use two 32-bit integers to store a single interval.
If the maximum range of the values of the interval list is known beforehand, it is possible to reduce
the number of bits used to store a single interval. It might be interesting to perform an analytical
and experimental comparison between PWAH-8 and the optimised interval lists.

Matrix multiplication on sparse matrices

The concept of using matrix multiplication for transitive closure computation has been described
in Section 2.4. Matrix multiplication and matrix compression (primarily for sparse/dense matrices)
are subjects of ongoing research [44], it might therefore be interesting to conduct an experiment to
compare different approaches to multiplication of compressed matrices for transitive closure compu-
tation.

Other types of compression

This thesis introduced the Partitioned Word Aligned Hybrid compression scheme, based on WAH by
Wu et al. [42]. It has been shown that reachability information obtained by performing a depth first
search is structured in a way very suitable for compression. There exist numerous types of compres-
sion schemes, each having its own advantages and disadvantages. Looking into other compression
schemes for compressing reachability information could yield interesting results.

More detailed theoretical analysis

It turned out to be very hard to actually prove certain properties of the behaviour of PWAH.
Considering the interesting experimental results, a more in-depth study of the theory behind PWAH
might improve our understanding of (the boundaries of) its performance.

Introduce PWAH in other fields of research

The concept of bit vector compression is being used in many fields of research and industry. Espe-
cially in the situations in which WAH [42] is currently being employed, it should be interesting to
consider the usage of PWAH, which provides a more fine-grained compression scheme.

54

Acknowledgements

The research project on which this thesis is based, as well as the thesis itself would not have been
possible without the people mentioned below. I am very grateful to all of them for providing me
with the support I needed to conduct this research project.

Oege de Moor has given me the opportunity to stay in his research group at the University of
Oxford for the entire length of the project. His valuable advice, endless optimism and continuous
encouragements have been of inexpressible importance to the project and the brilliant time I had in
Oxford whilst working on transitive closures. Furthermore it is him I need to thank for introducing
me to other scientists within the department, which lead to acceptance for a D.Phil. (PhD) in
Computer Science at the University of Oxford.

Although Arno Siebes did not concern himself too much with the details of my research, he
has been a very supportive supervisor, even though he was based in Utrecht. His advice regarding
personal affairs – both during the research project and in the years before that – has been of
invaluable importance and eventually helped me decide to pursue a career in academia.

My first serious encounter with research would not have been such a success if it were not for
the presence of Max Schäfer in office 002 of the University of Oxford Computing Laboratory. His
humour and irony have been of great help during difficult times. Discussions about research, life, the
universe (basically everything) have been a very welcome addition to the daily routines of a research
student. Also, I feel obliged to thank him for teaching me the ins and outs of refactorings, which
made me decide to not ever even consider pursuing a career in that field. Last, but not least he has
provided me with an incredible amount of useful comments after having proofread this thesis, for
which I am very thankful.

Steven Woudenberg has been a great friend even though I had left Utrecht, bringing me the
right things at the right time. A single phone call with him could made me feel like I had never left
my home city. Furthermore, he has been a great host for the times I briefly returned to Utrecht and
his visits to Oxford were always very cheerful.

Last but not least, my parents deserve the biggest credit of all. Although they did not under-
stand all of the choices I made in the past few years, they have always endeavoured to support me
and have always respected my decisions. It is that unconditional support which has been of vital
importance to all of my achievements.

Furthermore, there are a number of people I would like to thank for being a great friend and for
providing me with input and feedback on my thoughts: Anne Leewis, Claire Lowdon, Frank Tip,
Julian Tibble, Marie-Jette Wierbos, Michelle Meekes, Neelam Hassanali, Pavel Avgustinov, Rianne
’t Hoen, Sander van der Waal and Silvia Breu.

55

Appendix A

Tarjan’s algorithm: example

The following step-by-step example illustrate how Tarjan’s algorithm processes the graph depicted
in figure 2.1 on page 11. The first steps are also listed in section 2.2.3 on page 10.

1. DfsVisit(a) – Visit vertex a:

(a) Mark a as CCR of itself: CCR[a] = a, store DFS sequence number 1 for a: D[a] = 1

(b) Iterate over adjacent vertices: DfsVisit(b)

2. DfsVisit(b) – Visit vertex b:

(a) Mark b as CCR of itself: CCR[b] = b, store DFS sequence number 2 for b: D[b] = 2

(b) Iterate over adjacent vertices:
i. Adjacent vertex a has been visited before, not calling DfsVisit

C[a] = Nil and D[CCR[a]] < D[CCR[b]] (1 < 2),
therefore b inherits the CCR of a: CCR[b]← CCR[a] (thus, CCR[b] = a)

ii. Adjacent vertex c has not been visited before: DfsVisit(c)

3. DfsVisit(c) – Visit vertex c:

(a) CCR[c] = c, D[c] = 3

(b) Iterate over adjacent vertices:
i. Adjacent vertex b has been visited before, not calling DfsVisit

C[b] = Nil and D[CCR[b]] < D[CCR[c]] (1 < 3),
therefore c inherits the CCR of b: CCR[c]← CCR[b] (thus, CCR[c] = a)

ii. Adjacent vertex d has not been visited before: DfsVisit(d)

4. DfsVisit(d) – Visit vertex d:

(a) CCR[d] = d, D[d] = 4

(b) Iterate over adjacent vertices: DfsVisit(e)

5. DfsVisit(e) – Visit vertex e:

(a) CCR[e] = e, D[e] = 5

(b) Iterate over adjacent vertices:
i. Adjacent vertex d has been visited before, not calling DfsVisit

C[d] = Nil and D[CCR[d]] < D[CCR[e]] (4 < 5),
therefore e inherits the CCR of d: CCR[e]← CCR[d] (thus, CCR[e] = d)

(c) No more adjacent vertices. CCR[e] = d(6= e), therefore push e on stack S: S = {e}
(d) Return DFS call to d

6. Continue processing at vertex d

(c) No more adjacent vertices left. CCR[d] = d, therefore d becomes final component root

57

APPENDIX A. TARJAN’S ALGORITHM: EXAMPLE

i. Create a new component: C[d] = new component
ii. Stack S = {e}, pop component vertices off the stack:

Pop e→ C[e] = C[d]
S = {}

(d) Return DFS call to c

7. Continue processing at vertex c

(c) No more adjacent vertices left. CCR[c] = a(6= c), therefore push c on stack S: S = {c}
(d) Return DFS call to b

8. Continue processing at vertex b

(c) No more adjacent vertices left. CCR[b] = a(6= b), therefore push b on stack S: S = {c, b}
(d) Return DFS call to a

9. Continue processing at vertex a

(b) Continue iterating over adjacent vertices: DfsVisit(f)

10. DfsVisit(f)

(a) CCR[f] = f , D[f] = 6

(b) Iterate over adjacent vertices: DfsVisit(g)

11. DfsVisit(g)

(a) CCR[g] = g, D[g] = 7

(b) Iterate over adjacent vertices:
i. Adjacent vertex d has been visited before, not calling DfsVisit

C[d] 6= Nil→ g does not reside within d’s SCC → CCR[g] remains unchanged.
ii. Adjacent vertex f has been visited before, not calling DfsVisit

C[f] = Nil and D[CCR[f]] < D[CCR[g]] (6 < 7),
therefore g inherits the CCR of f : CCR[g]← CCR[f] (thus, CCR[g] = f)

(c) No more adjacent vertices left. CCR[g] = f(6= g), therefore push g on stack S: S =
{c, b, g}

(d) Return DFS call to f

12. Continue processing at vertex f

(c) No more adjacent vertices left. CCR[f] = f , therefore f becomes final component root
i. Create a new component: C[f] = new component
ii. Stack S = {c, b, g}, pop component vertices off the stack:

Pop g → C[g] = C[f]
S = {c, b}

(d) Return DFS call to a

13. Continue processing at vertex a

(b) Continue iterating over adjacent vertices: DfsVisit(h)

14. DfsVisit(h)

(a) CCR[h] = h, D[h] = 8

(b) Iterate over adjacent vertices: DfsVisit(i)

15. DfsVisit(i)

(a) CCR[i] = i, D[i] = 9

(b) Iterate over adjacent vertices:
i. Adjacent vertex c has been visited before, not calling DfsVisit

C[c] = Nil and D[CCR[c]] < D[CCR[i]] (3 < 9),
therefore i inherits the CCR of c: CCR[i]← CCR[c] (thus, CCR[i] = a)

58

APPENDIX A. TARJAN’S ALGORITHM: EXAMPLE

ii. Adjacent vertex e has been visited before, not calling DfsVisit
C[e] 6= Nil→ i does not reside within e’s SCC → CCR[i] remains unchanged.

iii. Adjacent vertex h has been visited before, not calling DfsVisit
C[h] = Nil but D[CCR[h]] ≮ D[CCR[i]] (8 ≮ 3).
Hence, i does reside within h’s SCC. However, i’s CCR (CCR[i] = a) is considered
more optimal than h’s CCR (CCR[h] = h,D[a] < D[h]). Therefore i does not inherit
the CCR of h.

iv. Adjacent vertex j has not been visited before: DfsVisit(j)

16. DfsVisit(j)

(a) CCR[j] = j, D[j] = 10

(b) Iterate over adjacent vertices: none

(c) No more adjacent vertices left. CCR[j] = j, therefore j becomes final component root
i. Create a new component: C[j] = new component
ii. Stack S = {c, b}, D[b] < D[i]→ no vertices to be popped off the stack

(d) Return DFS call to i

17. Continue processing at vertex i

(c) No more adjacent vertices left. CCR[b] = a 6= b, therefore push i on stack S: S = {c, b, i}
(d) Return DFS call to h

18. Continue processing at vertex h

(c) Adjacent vertex i has been processed, CCR[i] changed. Since C[i] = Nil, i belongs to
the same component as h and h needs to update its CCR: CCR[h] ← CCR[i] (thus,
CCR[h] = a).

(d) No more adjacent vertices left. CCR[h] = a 6= h, therefore push h on stack S: S =
{c, b, i, h}

(e) Return DFS call to a

19. Continue processing at vertex a

(c) No more adjacent vertices left. CCR[a] = a, therefore a becomes final component root
i. Create a new component: C[a] = new component
ii. Stack S = {c, b, i, h}, pop component vertices off the stack:

Pop h → C[h] = C[a]
Pop i → C[i] = C[a]
Pop b → C[b] = C[a]
Pop c → C[c] = C[a]

S = {}
(d) Return DFS call, algorithm terminates

59

Appendix B

Code details

Introduction

The research project which formed the foundation of this thesis started out using only the Java
programming language. However, in order to be able to compare the run time of the implementation
using compressed bit vectors to Path-Tree [19] and 3-Hop [18], using Java was no longer considered
an option.

Henceforth, C++ was used as new default language and most code was rewritten in C++.
Specific parts of the code are only available in one of the languages, like an implementation of
PWAH (C++ only) and the graph generator (Java only).

All code is available on request: Sebastiaan.van.Schaik@comlab.ox.ac.uk.

Java code

The Java code contains implementations of:

� A general directed graph (write once, read many), including parser for multiple file formats

� Graph exporting functionality (to multiple file formats)

� Tarjan’s algorithm

� Simple matrix multiplication for transitive closure computation

� BFS and DFS algorithms for transitive closure computation

� Interval lists

� A random graph generator

C++ code

The final C++ project contained a total of around 4,500 lines of C++ code, according to SLOCCount
[41]. It does not have any external dependencies, except for standard C/C++ library classes and
functions. The C++ code contains implementations of:

� A general directed graph (write once, read many), including parser

� Tarjan’s algorithm

� The WAH compression scheme, including iterators

� The PWAH compression schemes, including iterators

� Interval lists

61

Bibliography

[1] R. Acharya1, A. Kumar, P.S. Bhat, C. M. Lim, S. S. Iyengar, N. Kannathal, and S.M. Krish-
nan. Classification of cardiac abnormalities using heart rate signals. Medical and Biological
Engineering and Computing, 42(3):288–293, 2004.

[2] ADempiere Community. ADempiere. http://www.adempiere.org.

[3] Lars Ole Andersen. Program Analysis and Specialization for the C Programming Language.
PhD thesis, DIKU, University of Copenhagen, 1994.

[4] Anita Burgun and Olivier Bodenreider. An ontology of chemical entities helps identify depen-
dence relations among gene ontology terms. In Proceedings of First Symposium on Semantic
Mining in Biomedicine, 2005.

[5] Edmund M. Clarke. The birth of model checking. In 25 Years of Model Checking, pages 1–26,
2008.

[6] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9(3):251–280, 1990.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. MIT Press, Cambridge, Massachusetts, second edition, 2001.

[8] John Cristy and ImageMagick Studio LLC. ImageMagick. http://www.imagemagick.org.

[9] Souripriya Das, Eugene Inseok Chong, George Eadon, and Jaannathan Srinivasan. Support-
ing ontology-based semantic matching in rdbms. In VLDB ’04: Proceedings of the Thirtieth
international conference on Very large data bases, pages 1054–1065. VLDB Endowment, 2004.

[10] EcoCyc developers and contributors. EcoCyc. http://www.ecocyc.org.

[11] Michael J. Fischer and Albert R. Meyer. Boolean matrix multiplication and transitive closure.
In FOCS, pages 129–131. IEEE, 1971.

[12] Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345, 1962.

[13] Sumit Ganguly, Ravi Krishnamurthy, and Abraham Silberschatz. An analysis technique for
transitive closure algorithms: A statistical approach. In Proceedings of the Seventh International
Conference on Data Engineering, pages 728–735, Washington, DC, USA, 1991. IEEE Computer
Society.

[14] Alan Gibbons, Aris Pagourtzis, Igor Potapov, and Wojciech Rytter. Coarse-grained parallel
transitive closure algorithm: Path decomposition technique. Computer Journal, 46(4):391–400,
2003.

[15] Lee Giles, Isaac Councill, and the CiteSeer Project. CiteSeer. http://citeseerx.ist.psu.edu.

[16] A. V. Goldberg, É. Tardos, and R. E. Tarjan. Network Flow Algorithms. In B. Korte, L. Lovász,
H. J. Prömel, and A. Schrijver, editors, Flows, Paths, and VLSI Layout, pages 101–164. Springer
Verlag, 1990.

63

http://www.adempiere.org
http://www.imagemagick.org
http://www.ecocyc.org
http://citeseerx.ist.psu.edu

BIBLIOGRAPHY BIBLIOGRAPHY

[17] H. V. Jagadish. A compression technique to materialize transitive closure. ACM Trans. Database
Syst., 15(4):558–598, 1990.

[18] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 3-hop: a high-compression indexing
scheme for reachability query. In SIGMOD ’09: Proceedings of the 35th SIGMOD international
conference on Management of data, pages 813–826, New York, NY, USA, 2009. ACM.

[19] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. Efficiently answering reachability
queries on very large directed graphs. In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 595–608, New York, NY, USA, 2008.
ACM.

[20] Vincent Lacroix, Cristina G. Fern, and Marie-france Sagot. Reaction motifs in metabolic net-
works. In In Proceedings of the 5th international Workshop on Algorithms in BioInformatics
(WABI), pages 178–191, 2005.

[21] Enrico Macii. A discussion on explicit methods for transitive closure computation based on
matrix multiplication. Asilomar Conference on Signals, Systems and Computers, 0:799, 1995.

[22] Mark E. J. Newman. Random graphs as models of networks. Technical report, 2002.

[23] Mark E. J. Newman. Random graphs with clustering. 2009.

[24] Esko Nuutila. Efficient Transitive Closure Computation in Large Digraphs. PhD thesis, Finnish
Academy of Technology, 1995. http://www.cs.hut.fi/ enu/tc.html.

[25] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, third
edition, September 2007.

[26] Thomas Reps. Program analysis via graph reachability. In ILPS ’97: Proceedings of the 1997
international symposium on Logic programming, pages 5–19, Cambridge, MA, USA, 1997. MIT
Press.

[27] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 49–61, New York, NY, USA, 1995. ACM.

[28] Sara Robinson. Toward an optimal algorithm for matrix multiplication. SIAM News, 38(9):1–5,
November 2005.

[29] B. Roy. Transitivité et connexité. Comptes Rendus de l’Académie des Sciences Paris, 249:216–
218, 1958.

[30] Klaus Simon. An improved algorithm for transitive closure on acyclic digraphs. In Laurent Kott,
editor, ICALP, volume 226 of Lecture Notes in Computer Science, pages 376–386. Springer,
1986.

[31] Kurt Stockinger, Dirk Duellmann, Wolfgang Hoschek, and Erich Schikuta. Improving the
performance of high energy physics analysis through bitmap indices. In 11th International
Conference on Database and Expert Systems Applications, Greenwich, London, pages 835–845.
Springer-Verlag, 2000.

[32] Volker Strassen. The asymptotic spectrum of tensors and the exponent of matrix multiplication.
In FOCS, pages 49–54. IEEE, 1986.

[33] Fabian Suchanek, Gjergji Kasneci, Garhard Weikum, Johannes Hooffart, and Edwin Lewis-
Kelham. The YAGO Project. http://www.mpi-inf.mpg.de/yago-naga/yago/.

64

http://www.mpi-inf.mpg.de/yago-naga/yago/

BIBLIOGRAPHY BIBLIOGRAPHY

[34] Robert E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

[35] The Gene Ontology Consortium. The Gene Ontology Project. http://www.geneontology.org.

[36] Andrew Tridgell and the Samba Team. Samba. http://www.samba.org.

[37] Silke Trißl and Ulf Leser. Fast and practical indexing and querying of very large graphs. In
SIGMOD Conference, pages 845–856, 2007.

[38] Cornell University. arXiv. http://www.arxiv.org.

[39] U.S. National Institutes of Health, National Center for Biotechnology Information, National
Library of Medicine. PubMed Central. http://www.pubmedcentral.nih.gov.

[40] Stephen Warshall. A theorem on boolean matrices. Journal of the ACM, 9:11–12, 1962.

[41] David Wheeler. SLOCCount. http://www.dwheeler.com/sloccount/.

[42] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. An efficient compression scheme for bitmap
indices. Technical report, ACM Transactions on Database Systems, 2004.

[43] Ming-Chuan Wu and Alejandro P. Buchmann. Encoded bitmap indexing for data warehouses.
In ICDE, pages 220–230. IEEE Computer Society, 1998.

[44] Raphael Yuster and Uri Zwick. Fast sparse matrix multiplication. ACM Transactions on
Algorithms, 1(1):2–13, 2005.

65

http://www.geneontology.org
http://www.samba.org
http://www.arxiv.org
http://www.pubmedcentral.nih.gov
http://www.dwheeler.com/sloccount/

	Introduction
	Introduction
	Preliminary definitions
	Transitive closure
	Contributions
	Structure of the thesis

	Prior work
	Floyd-Warshall
	Exploiting strongly connected components
	Using chain and path decomposition
	Matrix multiplication

	Compressing reachability information
	Introduction
	WAH
	PWAH

	Experimental evaluation
	Set up of experiments
	Influence of input graphs on PWAH performance
	Comparing different PWAH schemes
	Indexing PWAH
	PWAH vs. interval lists, Path-Tree and 3-Hop

	Conclusion
	Experimental evaluation
	Further research

	Tarjan's algorithm: example
	Code details

